984 research outputs found

    A novel expression cassette for the efficient visual selection of transformed tissues in florist's chrysanthemum (Chrysanthemum morifolium Ramat.)

    Get PDF
    Constructs carrying visual reporter genes coupled with efficient promoters could facilitate the process of identification and selection of stable transformants in recalcitrant crops. Here, a novel construct utilizing a ribulose-1,5-bisphosphate carboxylase (RbcS) promoter combined with the green fluorescent protein (GFP) reporter gene to initiate very high expression of GFP in florist's chrysanthemum (Chrysanthemum morifolium Ramat.) was described. Based on this expression cassette, a new regeneration protocol using leaf discs as explants was developed for the Agrobacterium-mediated transformation of Chrysanthemum genotype ‘1581’, and a transformation efficiency of 7% was obtained. The expression of two different GFP constructs targeted to either cytosol or plastids was compared in transgenic lines. Both GFP constructs were expressed at such a high level that the green fluorescence dominated red fluorescence in the leaf tissues, allowing easy observation and microdissection of transformed tissues even without a GFP filter. Under normal light, plants with GFP targeted to plastids had a light green phenotype deriving from the high GFP expression. Quantitative reverse transcriptional PCR analysis showed that the plastid targeted construct with intron had significantly higher steady state transcript levels of GFP mRNA. This novel expression cassette may allow direct visual selection of transformed tissues independent of antibiotic selection in a wide range of plant species.Key words: Florist's chrysanthemum (Chrysanthemum morifolium), genetic transformation, GFP gene, RbcS promoter, RbcS targeting signal

    Acoustic emission sensing of pipe-soil interaction: Development of an early warning system for buried pipe deformation

    Get PDF
    This paper describes a programme of research that aims to develop a continuous, real-time acoustic emission (AE) monitoring system that can be distributed at discrete locations along buried pipelines to sense pipe/soil interaction and provide early warning of adverse behaviour to enable targeted and timely interventions. Pipe/soil interaction-generated AE propagates as guided waves along pipelines. Novel AE interpretation is allowing the evolution of the pipe/soil interaction behaviour to be characterised, and the rate and magnitude of deformation to be quantified. New understanding of AE propagation and attenuation in buried pipes is enabling source localisation methodologies to be developed. Results from normal faulting experiments performed on buried full-scale steel pipes at the buried infrastructure research facility at Queen’s University, Canada, are presented to demonstrate the potential of the AE technique for early detection of buried pipe deformation

    A two-hop based adaptive routing protocol for real-time wireless sensor networks

    Get PDF

    SEAS: A System for SEED-Based Pathway Enrichment Analysis

    Get PDF
    Pathway enrichment analysis represents a key technique for analyzing high-throughput omic data, and it can help to link individual genes or proteins found to be differentially expressed under specific conditions to well-understood biological pathways. We present here a computational tool, SEAS, for pathway enrichment analysis over a given set of genes in a specified organism against the pathways (or subsystems) in the SEED database, a popular pathway database for bacteria. SEAS maps a given set of genes of a bacterium to pathway genes covered by SEED through gene ID and/or orthology mapping, and then calculates the statistical significance of the enrichment of each relevant SEED pathway by the mapped genes. Our evaluation of SEAS indicates that the program provides highly reliable pathway mapping results and identifies more organism-specific pathways than similar existing programs. SEAS is publicly released under the GPL license agreement and freely available at http://csbl.bmb.uga.edu/~xizeng/research/seas/

    Discovery of Novel Small Molecule Activators of β-Catenin Signaling

    Get PDF
    Wnt/β-catenin signaling plays a major role in embryonic development and adult stem cell maintenance. Reduced activation of the Wnt/β-catenin pathway underlies neurodegenerative disorders and aberrations in bone formation. Screening of a small molecule compound library with a β-galactosidase fragment complementation assay measuring β-catenin nuclear entry revealed bona fide activators of β-catenin signaling. The compounds stabilized cytoplasmic β-catenin and activated β–catenin-dependent reporter gene activity. Although the mechanism through which the compounds activate β-catenin signaling has yet to be determined, several key regulators of Wnt/β-catenin signaling, including glycogen synthase kinase 3 and Frizzled receptors, were excluded as the molecular target. The compounds displayed remarkable selectivity, as they only induced β-catenin signaling in a human osteosarcoma U2OS cell line and not in a variety of other cell lines examined. Our data indicate that differences in cellular Wnt/β-catenin signaling machinery can be exploited to identify cell type-specific activators of Wnt/β-catenin signaling

    Recommendations for a core outcome set for measuring standing balance in adult populations: a consensus-based approach

    Get PDF
    Standing balance is imperative for mobility and avoiding falls. Use of an excessive number of standing balance measures has limited the synthesis of balance intervention data and hampered consistent clinical practice.To develop recommendations for a core outcome set (COS) of standing balance measures for research and practice among adults.A combination of scoping reviews, literature appraisal, anonymous voting and face-to-face meetings with fourteen invited experts from a range of disciplines with international recognition in balance measurement and falls prevention. Consensus was sought over three rounds using pre-established criteria.The scoping review identified 56 existing standing balance measures validated in adult populations with evidence of use in the past five years, and these were considered for inclusion in the COS.Fifteen measures were excluded after the first round of scoring and a further 36 after round two. Five measures were considered in round three. Two measures reached consensus for recommendation, and the expert panel recommended that at a minimum, either the Berg Balance Scale or Mini Balance Evaluation Systems Test be used when measuring standing balance in adult populations.Inclusion of two measures in the COS may increase the feasibility of potential uptake, but poses challenges for data synthesis. Adoption of the standing balance COS does not constitute a comprehensive balance assessment for any population, and users should include additional validated measures as appropriate.The absence of a gold standard for measuring standing balance has contributed to the proliferation of outcome measures. These recommendations represent an important first step towards greater standardization in the assessment and measurement of this critical skill and will inform clinical research and practice internationally

    Dkk1 Stabilizes Wnt Co-Receptor LRP6: Implication for Wnt Ligand-Induced LRP6 Down-Regulation

    Get PDF
    The low density lipoprotein receptor-related protein-6 (LRP6) is an essential co-receptor for canonical Wnt signaling. Dickkopf 1 (Dkk1), a major secreted Wnt signaling antagonist, binds to LRP6 with high affinity and prevents the Frizzled-Wnt-LRP6 complex formation in response to Wnts. Previous studies have demonstrated that Dkk1 promotes LRP6 internalization and degradation when it forms a ternary complex with the cell surface receptor Kremen.In the present study, we found that transfected Dkk1 induces LRP6 accumulation while inhibiting Wnt/LRP6 signaling. Treatment with Dkk1-conditioned medium or recombinant Dkk1 protein stabilized LRP6 with a prolonged half-life and induces LRP6 accumulation both at the cell surface and in endosomes. We also demonstrated that Kremen2 co-expression abrogated the effect of Dkk1 on LRP6 accumulation, indicating that the effect of Kremen2 is dominant over Dkk1 regulation of LRP6. Furthermore, we found that Wnt3A treatment induces LRP6 down-regulation, an effect paralleled with a Wnt/LRP6 signaling decay, and that Dkk1 treatment blocked Wnt3A-induced LRP6 down-regulation. Finally, we found that LRP6 turnover was blocked by an inhibitor of caveolae-mediated endocytosis.Our results reveal a novel role for Dkk1 in preventing Wnt ligand-induced LRP6 down-regulation and contribute significantly to our understanding of Dkk1 function in Wnt/LRP6 signaling

    Dual-Level Regulation of ACC Synthase Activity by MPK3/MPK6 Cascade and Its Downstream WRKY Transcription Factor during Ethylene Induction in Arabidopsis

    Get PDF
    Plants under pathogen attack produce high levels of ethylene, which plays important roles in plant immunity. Previously, we reported the involvement of ACS2 and ACS6, two Type I ACS isoforms, in Botrytis cinerea–induced ethylene biosynthesis and their regulation at the protein stability level by MPK3 and MPK6, two Arabidopsis pathogen-responsive mitogen-activated protein kinases (MAPKs). The residual ethylene induction in the acs2/acs6 double mutant suggests the involvement of additional ACS isoforms. It is also known that a subset of ACS genes, including ACS6, is transcriptionally induced in plants under stress or pathogen attack. However, the importance of ACS gene activation and the regulatory mechanism(s) are not clear. In this report, we demonstrate using genetic analysis that ACS7 and ACS11, two Type III ACS isoforms, and ACS8, a Type II ACS isoform, also contribute to the B. cinerea–induced ethylene production. In addition to post-translational regulation, transcriptional activation of the ACS genes also plays a critical role in sustaining high levels of ethylene induction. Interestingly, MPK3 and MPK6 not only control the stability of ACS2 and ACS6 proteins via direct protein phosphorylation but also regulate the expression of ACS2 and ACS6 genes. WRKY33, another MPK3/MPK6 substrate, is involved in the MPK3/MPK6-induced ACS2/ACS6 gene expression based on genetic analyses. Furthermore, chromatin-immunoprecipitation assay reveals the direct binding of WRKY33 to the W-boxes in the promoters of ACS2 and ACS6 genes in vivo, suggesting that WRKY33 is directly involved in the activation of ACS2 and ACS6 expression downstream of MPK3/MPK6 cascade in response to pathogen invasion. Regulation of ACS activity by MPK3/MPK6 at both transcriptional and protein stability levels plays a key role in determining the kinetics and magnitude of ethylene induction
    • …
    corecore