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Abstract
The present paper deals with the problem of an ecoepidemiological model with
linear mass-action functional response perturbed by white noise. The essential
mathematical features are analyzed with the help of the stochastic stability, its long
time behavior around the equilibrium of deterministic ecoepidemiological model,
and the stochastic asymptotic stability by Lyapunov analysis methods. Numerical
simulations for a hypothetical set of parameter values are presented to illustrate the
analytical findings.
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1 Introduction
In an ecosystem, species does not exist alone while it spreads the disease: it competes with
the other species for space or food or is predated by other species. Therefore, it is essential
to consider the effect of interacting species when we study the dynamical behaviors of epi-
demiological models. Recently, epidemiological dynamics have been extensively applied
in population biology. Some researchers have made some achievements (see [–]).

The authors in [] proposed and analyzed a predator-prey system in which some of the
susceptible phytoplankton cells were infected by viral contamination and formed a new
group (infected). The role of viral disease in recurrent phytoplankton blooms was dis-
cussed. They considered that the contact rate follows the law of proportional mixing rate.
They did not take into account in their model that the infected phytoplankton cells be-
come susceptible again. The author in [] studied an SI or SIS model with disease spread
among the prey when there is logistic growth of the predator and prey populations and
when the predators eat infected prey only. They have not regarded that infected popula-
tions contribute to the susceptible population toward its carrying capacity. The authors in
[] modified the model equations of [] and also the model of []. They assumed that the
contact rate follows the law of mass action rate. A portion of infected phytoplankter was
being recovered and became susceptible. The authors in [] assumed that pelicans feed
not only on infected fish but on susceptible fish also. Feeding on infected fish enhances
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the death rate of pelicans and is considered to contribute negative growth, whereas feed-
ing on susceptible fish enhances their growth rate and is considered to contribute positive
growth. In their model they did not consider that the portion of infected fish recovered and
became susceptible. On the basis of this model, the authors in [] studied and compared
the dynamics of the proposed ecoepidemiological model to explore the crucial system
parameters and their ranges in order to obtain different theoretical behaviors predicted
from the interactions between susceptible prey, infected prey, and their predators. For
linear mass-action functional response function, the ecoepidemiological model takes the
following form:

⎧
⎪⎨

⎪⎩

dS(t)
dt = rS(t)( – S(t)+I(t)

K ) – λS(t)I(t) – αS(t)P(t),
dI(t)

dt = λS(t)I(t) – βI(t)P(t) – μI(t),
dP(t)

dt = –θβI(t)P(t) – δP(t) + θαS(t)P(t),
(.)

where S(t), I(t), P(t) are the population densities of susceptible prey, infected prey, and
predator, respectively, at time t, K is the carrying capacity, r is the growth rate of sus-
ceptible prey, λ is the force of infection, θ is the conversion efficiency, α and β are the
attack rates on susceptible and infected prey, respectively, μ and δ are the death rates of
the infected prey and predators, respectively.

The authors in [] detail that system (.) has the following equilibria: E = (, , ),
E = (K , , ), E = (S, I, ) = ( μ

λ
, r(– μ

Kλ
)

r
K +λ

, ), E = (̃S, , P̃) = ( δ
θα

, , r
α

( – δ
θαK )), and E∗ =

(S∗, I∗, P∗), where

S∗ =
r + ( r

K + λ) δ
θβ

+ αμ

β

r
K + ( r

K + λ) α
β

, I∗ =
θαS∗ – δ

θβ
, P∗ =

λS∗ – μ

β
.

System (.) is unstable around E for all parametric values, globally asymptotically sta-
ble around E if λ < μ

K and α < δ
Kθ

, globally asymptotically stable around E if λ > μ

K and
α < 

μθ
[δλ + rβθ (λK–μ)

r+λK ], globally asymptotically stable around E if λ > μ

K and α > δλ
μθ

, and
unstable around E∗ for all parametric values.

However, in this case, the effects due to environmental noise have been neglected. In
fact, because of the existence of environmental noise, the parameters involved in system
(.) are not absolute constants, and they fluctuate around some average values owing to
continuous fluctuations in the environment. Therefore, the parameters in the model ex-
hibit continuous oscillation around some average values but do not attain fixed values with
the advancement of time. Consequently, the equilibrium population distribution fluctu-
ates randomly around some average values. So many authors introduce stochastic pertur-
bation into deterministic models to reveal the effect of environmental variability on the
ecology and epidemiology system (see [–]). Keeping this in mind, we have modified
the model (.) proposed by [] and taken into account the effect of randomly fluctuating
and stochastically perturbed force of infection λ in each equation of system (.):

λ → λ + σ Ḃt .

Consequently, λdt → λdt + σ dBt , where Bt is a standard Brownian motion, σ  >  is the
intensity of environmental white noise. Then system (.) becomes
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⎧
⎪⎨

⎪⎩

dS(t) = [rS(t)( – S(t)+I(t)
K ) – λS(t)I(t) – αS(t)P(t)] dt – σS(t)I(t) dB(t),

dI(t) = (λS(t)I(t) – βI(t)P(t) – μI(t)) dt + σS(t)I(t) dB(t),
dP(t) = (–θβI(t)P(t) – δP(t) + θαS(t)P(t)) dt.

(.)

In this paper, we study the dynamics of the ecoepidemiological model with linear mass-
action functional response perturbed by white noise to explore the crucial system param-
eters and their ranges in order to obtain different theoretical behaviors predicted from the
interactions between susceptible prey, infected prey, and their predators.

This paper is organized as follows. The existence and uniqueness of a positive solution
are given in Section . In Section , we show that the equilibrium E of system (.) is
stochastically unstable. In Section , we discuss that the equilibrium E of system (.) is
stochastically asymptotically stable in the large under some conditions and investigate the
convergence rate of the solution. In Section , we study the fluctuations of system (.)
about its equilibrium E under some conditions. In Section , we carry out an analysis of
stochastically asymptotically stability around the equilibrium E of system (.). Numer-
ical results are obtained by varying the parameters of the ecoepidemiological model in
Section .

Throughout this paper, we let (�,F , {Ft}t≥,P) be a complete probability space with
filtration {Ft}t≥ satisfying the usual conditions (i.e., it is increasing and right continuous
with F containing all P-null sets), and we let B(t) be a scalar Brownian motion defined
on the probability space.

2 Existence and uniqueness of a positive solution
In this section, we show that there is a unique globally positive solution of system (.).

Theorem . There is a unique positive solution (S(t), I(t), P(t)) of system (.) a.s. for any
initial value (S(), I(), P()) ∈ R

+, and S() + I() ≤ K .

Proof Obviously, the coefficients of equation (.) satisfy the local Lipschitz condition.
Therefore, there is a unique local solution (S(t), I(t), P(t)) on t ∈ [, τe), where τe is the
explosion time. Moreover, if S() + I() ≤ K , then S(t) + I(t) ≤ K for t ∈ [, τe) a.s. In fact,
note that

d(S + I)
dt

= rS
(

 –
S + I

K

)

– αSP – βIP – μI

≤ max

{

, r(S + I)
(

 –
S + I

K

)}

.

Therefore,

S(t) + I(t) ≤ max

{

S() + I(),
[


K

+
(


S() + I()

–

K

)

e–rt
]–}

≤ K .

Let W (t) = S(t) + I(t) + 
θ

P(t). Then

dW (t)
dt

+ ηW (t) = rS
(

 –
S + I

K

)

– βIP – μI –
δ

θ
P + η

(

S + I +

θ

P
)

≤ S
[

η + r
(

 –
S
K

)]

– (μ – η)I –
δ – η

θ
P
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= –
r
K

[

S –
K(r + η)

r

]

+
K(r + η)

r
– (μ – η)I –

δ – η

θ
P

≤ K(r + η)

r

by choosing η = min{μ, δ} such that μ – η ≥  and δ – η ≥ . Hence, by the comparison
theorem we get

W (t) ≤ e–ηt
[

W () +
K

rη
(η + r)(eηt – 

)
]

≤ max

{

W (),
K

rη
(η + r)

}

and

lim sup
t→∞

W (t) ≤ K
rη

(η + r) :=
B
η

(

B =
K(η + r)

r

)

,

which is independent of the initial values.
Now, we are going to show that this solution is global, that is, that τe = ∞ a.s. Let k > 

be sufficiently large so that S(), I(), and P() all lie within the interval [ 
k

, k]. For each
integer k ≥ k, define the stopping time

τk = inf

{

t ∈ [, τe) : min
{

S(t), I(t), P(t)
} ≤ 

k
or max

{
S(t), I(t), P(t)

} ≥ k
}

,

where we set inf∅ = ∞ (as usual, ∅ denotes the empty set). Clearly, τk is increasing as
k → ∞. Set τ∞ = limk→∞ τk , whence τ∞ ≤ τe a.s. If we can show that τ∞ = ∞ a.s., then
τe = ∞ and (S(), I(), P()) ∈ R

+ a.s. for all t ≥ . In other words, to complete the proof,
all we need to show is that τ∞ = ∞ a.s. If this statement is false, then there is a pair of
constants T >  and ε ∈ (, ) such that

P{τ∞ ≤ T} > ε.

Hence, there is an integer k ≥ k such that

P{τk ≤ T} ≥ ε for all k ≥ k. (.)

Define the C-function V : R
+ → R+ by

V (S, I, P) = S –  – log S + I –  – log I +

θ

(P –  – log P).

The nonnegativity of this function can be seen from the inequality u – l – l log u
l ≥  (l > )

for all u > . Using Itô’s formula, we get

dV =
[

(S – )
(

r
(

 –
S + I

K

)

– λI – αP
)

+
σ I



]

dt – σ I(S – ) dB(t)

+
[

(I – )(λS – βP – μ) +
σ S



]

dt + σS(I – ) dB(t)
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+

θ

(P – )(–θβI – δ + θαS) dt

:= LV dt + σ (I – S) dB(t),

where

LV = μ +
δ

θ
– r +

(

r +
r
K

– λ – α

)

S +
(

r
K

+ λ + β – μ

)

I +
(

α + β –
δ

θ

)

P

–
r
K

S –
r
K

SI – βIP +
σ 


(
S + I)

≤ μ +
δ

θ
+

(

r +
r
K

)

S +
(

r
K

+ λ + β

)

I + (α + β)P +
σ 


(
S + I)

≤ μ +
δ

θ
+ max

{

r +
r
K

,
r
K

+ λ + β , θ (α + β)
}

B
η

+ Kσ .

By a similar proof as in Li and Mao [], Theorem ., we can obtain the desired assertion;
see Appendix . �

Remark . From this theorem we know that the region

� =
{

(S, I, P) ∈ R
+ : S + I ≤ K , S + I +


θ

P ≤ B
η

}

is a positively invariant set of system (.), where B and η are determined in the proof of
Theorem .. From now on we always assume that the initial value (S(), I(), P()) ∈ �.

3 Stochastic instability around the equilibrium E0 = (0, 0, 0)
System (.) is unstable around E for all parametric values. It is obvious that E is still
an equilibrium of system (.). In this section, we show that the equilibrium E of system
(.) is stochastically unstable.

Theorem . Let (S(t), I(t), P(t)) be the solution of system (.) with initial value (S(), I(),
P()) ∈ �. Then the equilibrium E = (, , ) of system (.) is stochastically unstable.

Proof If not, there must be � and T >  such that P{�} >  and S(t) ≤ K
 , I(t) ≤

Kr
(r+Kλ+Kσ) , and P(t) ≤ r

α
for t ≥ T, ω ∈ �. Hence,

d log S =
[

r –
r
K

S –
(

r
K

+ λ

)

I – αP –
σ 


I

]

dt – σ I dB(t)

≥
[

r –
r
K

S –
(

r
K

+ λ +
Kσ 



)

I – αP
]

dt – σ I dB(t)

≥ r


dt – σ I dB(t).

Then

log S(t) – log S(T) ≥ r


(t – T) – σ

∫ t

T

I(s) dB(s).
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Let M(t) =
∫ t

T
I(s) dB(s), which is a real-valued continuous local martingale, M(T) = ,

and

lim sup
t→∞

〈M, M〉t

t
= lim sup

t→∞

∫ t
T

I(s) ds
t

≤ K < ∞ a.s.

Then by the strong law of large numbers we have

lim
t→∞

M(t)
t

= lim
t→∞

∫ t
T

I(s) dB(s)
t

=  a.s.

Therefore,

lim inf
t→∞

log S(t)
t

≥ r


,

which is a contradiction, and the proof of this theorem is completed. �

4 Global asymptotic stability around the equilibrium E1 = (K , 0, 0)
System (.) is globally asymptotically stable around E if λ < μ

K and α < δ
Kθ

. It is obvious
that E is still an equilibrium of system (.). In this section, we first show that it is stochas-
tically asymptotically stable in the large under some conditions. Then we investigate the
convergence rate of the solution.

Theorem . Let (S(t), I(t), P(t)) be the solution of system (.) with initial value (S(), I(),
P()) ∈ �. If Kλ < μ – λKσ

(r+Kλ) and α < δ
Kθ

, then the equilibrium E = (K , , ) of system (.)
is stochastically asymptotically stable in the large.

Proof Define the function V : R → R+ by

V (S, I, P) = S – K – K log
S
K

+
r
K + λ

λ
I +


θ

P.

Let L be the generating operator of system (.). Then

LV = (S – K)
[

r
(

 –
S + I

K

)

– λI – αP
]

+
Kσ 


I +

r
K + λ

λ
(λSI – βIP – μI)

+

θ

(–θβIP – δP + θαSP)

= –
r
K

(S – K) +
[

K
(

r
K

+ λ

)

–
r
K + λ

λ
μ

]

I –
( r

K + λ

λ
+ 

)

βIP –
δ

θ
P

+
Kσ 


I + αSP

= –
r
K

(S – K) +
[

K
(

r
K

+ λ

)

–
r
K + λ

λ
μ +

Kσ 


I
]

I

+
(

αS –
δ

θ
–

( r
K + λ

λ
+ 

)

βI
)

P

≤ –
r
K

(S – K) +
[

K
(

r
K

+ λ

)

–
r
K + λ

λ
μ +

Kσ 



]

I +
(

αK –
δ

θ

)

P,
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which is negative-definite according to K( r
K + λ) –

r
K +λ

λ
μ + Kσ

 <  and αK – δ
θ

< , that
is, Kλ – μ + λKσ

(r+Kλ) <  and α < δ
Kθ

. Therefore, by Lemma A. (Mao []) the equilibrium
E = (K , , ) of system (.) is stochastically asymptotically stable in the large. �

In the remainder of this section, we compute the convergence rate of I(t), P(t), and S(t).

Theorem . Let (S(t), I(t), P(t)) be the solution of system (.) with initial value (S(), I(),
P()) ∈ �. Assume that

(a) σ  > max{ λ
K , λ

μ
}, or

(b) max{, (λK–μ)
K } < σ  ≤ λ

K , or
(c) α < δ

Kθ
.

Then

lim sup
t→∞

log I(t)
t

≤ λ

σ  – μ <  a.s. if (a) holds;

lim sup
t→∞

log I(t)
t

≤ λK – μ –
σ K


<  a.s. if (b) holds;

lim sup
t→∞

log P(t)
t

≤ –(δ – θαK) <  a.s. if (c) holds.

Moreover,

lim
t→∞


t

∫ t


S(s) ds = K a.s.

Proof By Itô’s formula we have

d log I =
(

λS – βP – μ –
σ 


S

)

dt + σS dB(t) ≤
(

λS – μ –
σ 


S

)

dt + σS dB(t).

Let

f (S) := λS – μ –
σ 


S, s ∈ (, K].

We will analyze the following two cases.
(i) λ

σ < K . Then we have

f (S) ≤ f
(

λ

σ 

)

=
λ

σ  – μ.

Therefore,

d log I ≤
(

λ

σ  – μ

)

dt + σS dB(t)

and

log I(t)
t

≤ log I()
t

+
(

λ

σ  – μ

)

+
σ

t

∫ t


S(x) dB(x). (.)
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Let M(t) =
∫ t

 S(x) dB(x), which is a real-valued continuous local martingale, M() = ,
and

lim sup
t→∞

〈M, M〉t

t
= lim sup

t→∞

∫ t
 S(x) dx

t
≤ K < ∞ a.s.

Then by the strong law of large numbers we have

lim
t→∞

M(t)
t

= lim
t→∞

∫ t
 S(x) dB(x)

t
=  a.s.,

which by (.) implies that

lim sup
t→∞

log I(t)
t

≤ λ

σ  – μ a.s.

By condition (a) it is easy to see that

lim sup
t→∞

log I(t)
t

≤ λ

σ  – μ <  a.s., (.)

that is, I(t) tends to zero exponentially almost surely. In other words, the infected prey
population dies out with probability one.

(ii) λ

σ ≥ K . Then we have

f (S) ≤ f (K) = λK – μ –
σ K


.

Therefore,

d log I ≤
(

λK – μ –
σ K



)

dt + σS dB(t).

Similarly, as in (i), we get

lim sup
t→∞

log I(t)
t

≤ λK – μ –
σ K


a.s.

Using condition (b), we then obtain that

lim sup
t→∞

log I(t)
t

≤ λK – μ –
σ K


<  a.s., (.)

that is, I(t) tends to zero exponentially almost surely. In other words, the infected prey
population dies out with probability one.

In the same way, by Itô’s formula we have

dP = (–θβIP – δP + θαSP) dt = P(–θβI – δ + θαS) dt

≤ P(–θβI – δ + θαK) dt ≤ –P(δ – θαK) dt.
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Therefore,

lim sup
t→∞

log P(t)
t

≤ –(δ – θαK) a.s.

Condition (c) implies

lim sup
t→∞

log P(t)
t

≤ –(δ – θαK) <  a.s., (.)

thats is, P(t) tends to zero exponentially almost surely. In other words, the predator pop-
ulation dies out with probability one.

By Itô’s formula we have

d log S =
[

r –
r
K

S –
(

r
K

+ λ

)

I – αP –
σ 


I

]

dt – σ I dB(t).

Therefore,

log S(t) – log S() = rt –
r
K

∫ t


S(s) ds –

(
r
K

+ λ

)∫ t


I(s) ds – α

∫ t


P(s) ds

–
σ 



∫ t


I(s) ds – σ

∫ t


I(s) dB(s)

and

r
K


t

∫ t


S(s) ds = r –

log S(t) – log S()
t

–
(

r
K

+ λ

)

t

∫ t


I(s) ds –

α

t

∫ t


P(s) ds

–
σ 



t

∫ t


I(s) ds – σ


t

∫ t


I(s) dB(s)

≥ r –
log K – log S()

t
–

(
r
K

+ λ

)

t

∫ t


I(s) ds –

α

t

∫ t


P(s) ds

–
σ 



t

∫ t


I(s) ds – σ


t

∫ t


I(s) dB(s).

This, together with (.), (.), and (.), implies that

lim inf
t→∞


t

∫ t


S(s) ds ≥ K a.s.

Due to

K ≤ lim inf
t→∞


t

∫ t


S(s) ds ≤ lim sup

t→∞

t

∫ t


S(s) ds ≤ K a.s.,

we obtain

lim
t→∞


t

∫ t


S(s) ds = K a.s. �
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5 Asymptotic behavior around the equilibrium E2 = (S, I, 0) of system (1.1)
The equilibrium E = (S, I, ) of system (.) exists if λK > μ, but it is not an equilibrium of
system (.). In this section, we first compute the convergence rate of P(t). Then we study
the fluctuations of system (.) about its equilibrium E under some conditions.

Theorem . Let (S(t), I(t), P(t)) be the solution of system (.) with initial value (S(), I(),
P()) ∈ �. If λK > μ and α < δ

Kθ
, then

lim sup
t→∞

log P(t)
t

≤ –(δ – θαK) <  a.s. (.)

and

lim sup
t→∞


t

∫ t



[(
S(s) – S

) +
(
I(s) – I

)]ds ≤ σ K(S +
r
K +λ

λ
I + ηr

λ )
m

a.s.,

where E = (S, I, ) is the boundary equilibrium of system (.), m = min{ r
K , μη

 (
r
K +λ

λ
)},

and η = r
K [r – r

K S + r
K

r
K +λ

λ
I + (r– r

K S–μ)

μ
]–.

Proof By Itô’s formula, we can easily show that, for t > ,

dP = (–θβIP – δP + θαSP) dt = P(–θβI – δ + θαS) dt

≤ P(–θβI – δ + θαK) dt ≤ –P(δ – θαK) dt.

Therefore,

lim sup
t→∞

log P(t)
t

≤ –(δ – θαK) a.s.

It then follows from the condition α < δ
Kθ

that

lim sup
t→∞

log P(t)
t

≤ –(δ – θαK) <  a.s.,

that is, P(t) tends to zero exponentially almost surely. In other words, the predator popu-
lation dies out with probability one. That is to say, we can see that limt→∞ P(t) = .

Since (S, I, ) is the boundary equilibrium of system (.), we have

r
(

 –
S + I

K

)

= λI, μ = λS.

Define

V (S, I, P) = S – S – S log
S
S

+
r
K + λ

λ

(

I – I – I log
I
I

)

+
η



[

S – S +
r
K + λ

λ
(I – I)

]

:= V + ηV,
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where η is a positive constant, which is determined later. By Itô’s formula and (.) we
compute

dV =
{

(S – S)
[

r
(

 –
S + I

K

)

– λI – αP
]

+
σ I


S
}

dt – σ (S – S)I dB(t)

+
r
K + λ

λ

{[

(I – I)(λS – βP – μ) +
σ S


I
]

dt + σ (I – I)S dB(t)
}

:= LV dt +
[ r

K + λ

λ
σ (I – I)S – σ (S – S)I

]

dB(t),

where

LV = (S – S)
[

r
(

 –
S + I

K

)

– λI – αP
]

+
σ I


S

+
r
K + λ

λ

[

(I – I)(λS – βP – μ) +
σ S


I
]

= –
r
K

(S – S) –
(

r
K

+ λ

)

(S – S)(I – I) – αP(S – S) +
σ I


S

+
r
K + λ

λ

[

λ(S – S)(I – I) – βP(I – I) +
σ S


I
]

= –
r
K

(S – S) – αP(S – S) –
r
K + λ

λ
βP(I – I) +

σ I


S +

r
K + λ

λ

σ S


I.

Let Y = S – S +
r
K +λ

λ
(I – I). Then

dY =
(

rS –
r
K

S – αSP –
r
K + λ

λ
βIP –

r
K + λ

λ
μI

)

dt +
rσ
Kλ

SI dB(t),

dV =
[

S – S +
r
K + λ

λ
(I – I)

][(

rS –
r
K

S – αSP –
r
K + λ

λ
βIP –

r
K + λ

λ
μI

)

dt

+
rσ
Kλ

SI dB(t)
]

+
rσ 

Kλ SI dt

:= LV dt +
[

S – S +
r
K + λ

λ
(I – I)

]
rσ
Kλ

SI dB(t),

where

LV =
[

S – S +
r
K + λ

λ
(I – I)

](

rS –
r
K

S – αSP –
r
K + λ

λ
βIP –

r
K + λ

λ
μI

)

+
rσ 

Kλ SI

=
[

S – S +
r
K + λ

λ
(I – I)

][

–
r
K

(S – S) +
(

r –
r
K

S
)

(S – S) – αSP

–
r
K + λ

λ
βP(I – I) –

r
K + λ

λ
μ(I – I) –

r
K + λ

λ
βIP

]

+
rσ 

Kλ SI

= –
r
K

S(S – S) +
(

r –
r
K

S +
r
K

r
K + λ

λ
I
)

(S – S) –
r
K + λ

λ
βP(S – S)(I – I)
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– αSP(S – S) –
r
K + λ

λ
βIP(S – S) +

r
K + λ

λ

(

r –
r
K

S – μ

)

(S – S)(I – I)

–
r
K

r
K + λ

λ
I(S – S) –

r
K + λ

λ
αSP(I – I) –

( r
K + λ

λ

)

βP(I – I)

–
( r

K + λ

λ

)

βIP(I – I) – μ

( r
K + λ

λ

)

(I – I) +
rσ 

Kλ SI

≤
(

r –
r
K

S +
r
K

r
K + λ

λ
I
)

(S – S) +
r
K + λ

λ

(

r –
r
K

S – μ

)

(S – S)(I – I)

– μ

( r
K + λ

λ

)

(I – I) –
r
K + λ

λ
βP(S – S)(I – I) – αSP(S – S)

–
r
K + λ

λ
βIP(S – S) –

r
K + λ

λ
αSP(I – I) –

( r
K + λ

λ

)

βIP(I – I) +
rσ 

Kλ SI.

By the Cauchy inequality we can easily show that

LV ≤
[

r –
r
K

S +
r
K

r
K + λ

λ
I +

(r – r
K S – μ)

μ

]

(S – S) –
μ



( r
K + λ

λ

)

(I – I)

–
r
K + λ

λ
βP(S – S)(I – I) – αSP(S – S) –

r
K + λ

λ
βIP(S – S)

–
r
K + λ

λ
αSP(I – I) –

( r
K + λ

λ

)

βIP(I – I) +
rσ 

Kλ SI.

By choosing η such that η[r – r
K S + r

K

r
K +λ

λ
I + (r– r

K S–μ)

μ
] = r

K , that is, η = r
K [r – r

K S +
r
K

r
K +λ

λ
I + (r– r

K S–μ)

μ
]–, we see that

LV = LV + ηLV

≤ –
r

K
(S – S) –

μη



( r
K + λ

λ

)

(I – I) – αP(S – S) –
r
K + λ

λ
βP(I – I)

+ η

[

–
r
K + λ

λ
βP(S – S)(I – I) – αSP(S – S) –

r
K + λ

λ
βIP(S – S)

–
r
K + λ

λ
αSP(I – I) –

( r
K + λ

λ

)

βIP(I – I)
]

+
σ I


S +

r
K + λ

λ

σ S


I

+
ηrσ 

Kλ SI.

Notice that

dV = LV dt +
r
K + λ

λ
σ (I – I)S dB(t) – σ (S – S)I dB(t)

+
ηr
Kλ

σSI
[

S – S +
r
K + λ

λ
(I – I)

]

dB(t)

= LV dt +
[ r

K + λ

λ
σS(I – I) – σ I(S – S) +

ηr
Kλ

σSI(S – S)

+
r
K + λ

λ

ηr
Kλ

σSI(I – I)
]

dB(t).
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Integrating both sides of from  to t yields

V (t) – V ()

≤ –
r

K

∫ t



(
S(s) – S

) ds –
μη



( r
K + λ

λ

) ∫ t



(
I(s) – I

) ds

–
∫ t


αP(s)

(
S(s) – S

)
ds

–
∫ t



r
K + λ

λ
βP(s)

(
I(s) – I

)
ds + η

[

–
∫ t



r
K + λ

λ
βP(s)

(
S(s) – S

)(
I(s) – I

)
ds

–
∫ t


αS(s)P(s)

(
S(s) – S

)
ds –

∫ t



r
K + λ

λ
βIP(s)

(
S(s) – S

)
ds

–
∫ t



r
K + λ

λ
αS(s)P(s)

(
I(s) – I

)
ds –

∫ t



( r
K + λ

λ

)

βIP(s)
(
I(s) – I

)
ds

]

+
σ K



(

S +
r
K + λ

λ
I +

ηr

λ

)

t +
∫ t


σ

[ r
K + λ

λ
S(s)

(
I(s) – I

)
– I(s)

(
S(s) – S

)

+
ηr
Kλ

S(s)I(s)
(
S(s) – S

)
+

r
K + λ

λ

ηr
Kλ

S(s)I(s)
(
I(s) – I

)
]

dB(s). (.)

Let

f (t) = –
∫ t


αP(s)

(
S(s) – S

)
ds –

∫ t



r
K + λ

λ
βP(s)

(
I(s) – I

)
ds

+ η

[

–
∫ t



r
K + λ

λ
βP(s)

(
S(s) – S

)(
I(s) – I

)
ds –

∫ t


αS(s)P(s)

(
S(s) – S

)
ds

–
∫ t



r
K + λ

λ
βIP(s)

(
S(s) – S

)
ds –

∫ t



r
K + λ

λ
αS(s)P(s)

(
I(s) – I

)
ds

–
∫ t



( r
K + λ

λ

)

βIP(s)
(
I(s) – I

)
ds

]

.

By the boundedness of S(t) and I(t) and by (.) we can show that

lim sup
t→∞

f (t)
t

=  a.s.

Let

M(t) =
∫ t


σ

[ r
K + λ

λ
S(s)

(
I(s) – I(s)

)
– I(s)

(
S(s) – S(s)

)
+

ηr
Kλ

S(s)I(s)
(
S(s) – S(s)

)

+
r
K + λ

λ

ηr
Kλ

S(s)I(s)
(
I(s) – I(s)

)
]

dB(s),

which is a real-valued continuous local martingale, M() = , and

lim sup
t→∞

〈M, M〉t

t

= lim sup
t→∞


t

∫ t


σ 

[ r
K + λ

λ
S(s)

(
I(s) – I

)
– I(s)

(
S(s) – S

)
+

rη

Kλ
S(s)I(s)

(
S(s) – S

)
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+
rη

Kλ

r
K + λ

λ
S(s)I(s)

(
I(s) – I

)
]

ds

≤Kσ 
[( r

K + λ

λ

)

+  +
rη


λ

(

 +
( r

K + λ

λ

))]

< ∞ a.s.

Then by the strong law of large numbers we have

lim
t→∞

M(t)
t

=  a.s.

It then follows from (.) that

lim sup
t→∞


t

∫ t



[
r

K
(
S(s) – S

) +
μη



( r
K + λ

λ

)(
I(s) – I

)
]

ds

≤ σ K(S +
r
K +λ

λ
I + ηr

λ )


a.s.

Then we obtain

lim sup
t→∞


t

∫ t



[(
S(s) – S

) +
(
I(s) – I

)]ds

≤ σ K(S +
r
K +λ

λ
I + ηr

λ )
m

a.s.,

where m = min{ r
K , μη

 (
r
K +λ

λ
)}.

Hence, the proof of this theorem is completed. �

6 Stochastic asymptotic stability around the equilibrium E3 = (˜S, 0,˜P)
Since (̃S, , P̃) is the boundary equilibrium of system (.), we have

r
(

 –
S̃
K

)

= αP̃, δ = θαS̃.

The stochastic system (.) can be centered at its equilibrium E = (̃S, , P̃) by the change
of variables

u = S – S̃, w = P – P̃.

We obtain the following system:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

du = [(r – r
K S̃ – αP̃)u – ( r

K + λ)̃SI – αS̃w – r
K u – ( r

K + λ)uI – αuw] dt
– (σuI + σ S̃I) dB(t),

dI = [(λ̃S – βP̃ – μ)I + λuI – βIw] dt + (σuI + σ S̃I) dB(t),
dw = (θαP̃u – θβP̃I – θβIw + θαuw) dt.

(.)

It is easy to see that the stability of the equilibrium of system (.) is equivalent to the
stability of the zero solution of system (.).
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Theorem . Let (S(t), I(t), P(t)) be the solution of system (.) with initial value (S(), I(),
P()) ∈ �. If

α >
δλ

μθ
, λ >

μ

K
, σ  <

(βP̃ + μ – λ̃S)
S̃

,

then E = (̃S, , P̃) is stochastically asymptotically stable.

Proof It is easy to see that we only need to prove that the zero solution of (.) is stochas-
tically asymptotically stable.

Let x = (u, I, w). Define the Lyapunov function V (x) as follows:

V (x) = η



(

u + I +

θ

w
)

+



(u + I) + η



w + η



I

:= ηV + V + ηV + ηV,

where η, η, η are positive constants, which are determined later. By Itô’s formula we
compute

dV =
(

u + I +

θ

w
)[(

r –
r
K

S̃
)

u –
(

r
K

S̃ + βP̃ + μ

)

I

– αS̃w –
r
K

u –
r
K

uI – βIw
]

dt,

where

LV =
(

u + I +

θ

w
)[(

r –
r
K

S̃
)

u –
(

r
K

S̃ + βP̃ + μ

)

I – αS̃w –
r
K

u –
r
K

uI – βIw
]

=
(

r –
r
K

S̃
)

u –
(

r
K

S̃ + βP̃ + μ

)

I –
δ

θ w +
(

r –
r
K

S̃ – βP̃ – μ

)

uI

+

θ

(

r –
r
K

S̃ – δ

)

uw –

θ

(
r
K

S̃ + βP̃ + μ + δ

)

Iw

+
(

u + I +

θ

w
)(

–
r
K

u –
r
K

uI – βIw
)

.

Since (̃S, , P̃) is the boundary equilibrium of system (.), we get

r –
r
K

S̃ = αP̃ –
r
K

S̃ ≤ αP̃.

Moreover, using the Cauchy inequality, we obtain

LV ≤ αP̃u –
(

r
K

S̃ + βP̃ + μ

)

I –
δ

θ w +
(

r –
r
K

S̃ – βP̃ – μ

)

uI

+

θ

(

r –
r
K

S̃ – δ

)

uw –

θ

(
r
K

S̃ + βP̃ + μ + δ

)

Iw

+
(

u + I +

θ

w
)(

–
r
K

u –
r
K

uI – βIw
)
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≤
[

αP̃ +

δ

(

r –
r
K

S̃ – δ

)

+



(

r –
r
K

S̃ – βP̃ – μ

)( r
K

S̃ + βP̃ + μ

)–]

u

+

δ

(
r
K

S̃ + βP̃ + μ + δ

)

I –
δ

θ w

+
(

u + I +

θ

w
)(

–
r
K

u –
r
K

uI – βIw
)

.

Further,

dV = (u + I)
[(

r –
r
K

S̃ – αP̃
)

u –
(

r
K

S̃ + βP̃ + μ

)

I – αS̃w –
r
K

u

–
r
K

uI – αuw – βIw
]

dt,

where

LV = (u + I)
[(

r –
r
K

S̃ – αP̃
)

u –
(

r
K

S̃ + βP̃ + μ

)

I – αS̃w –
r
K

u –
r
K

uI

– αuw – βIw
]

=
(

r –
r
K

S̃ – αP̃
)

u –
(

r
K

S̃ + βP̃ + μ

)

I +
(

r –
r
K

S̃ – αP̃ – βP̃ – μ

)

uI

–
δ

θ
uw –

δ

θ
Iw + (u + I)

(

–
r
K

u –
r
K

uI – αuw – βIw
)

= –
r
K

S̃u –
(

r
K

S̃ + βP̃ + μ

)

I +
(

r –
r
K

S̃ – αP̃ – βP̃ – μ

)

uI

–
δ

θ
uw –

δ

θ
Iw + (u + I)

(

–
r
K

u –
r
K

uI – αuw – βIw
)

;

dV = I
{[

(λ̃S – βP̃ – μ)I + λuI – βIw
]

dt + (σuI + σ S̃I) dB(t)
}

+



(σuI + σ S̃I) dt,

where

LV = I
[
(λ̃S – βP̃ – μ)I + λuI – βIw

]
+




(σuI + σ S̃I)

=
(

λ̃S – βP̃ – μ +


σ ̃S

)

I +
(

λu – βw +


σ u + σ ̃Su

)

I.

By the condition σ  < (βP̃+μ–λ̃S)
S̃ we get that λ̃S – βP̃ – μ + 

σ ̃S < .
We further have

dV = w(θαP̃u – θβP̃I – θβIw + θαuw) dt,

where

LV = w(θαP̃u – θβP̃I – θβIw + θαuw) = θαP̃uw – θβP̃Iw + w(–θβIw + θαuw).
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Then we obtain

LV + ηLV

= –
r
K

S̃u –
(

r
K

S̃ + βP̃ + μ

)

I +
(

r –
r
K

S̃ – αP̃ – βP̃ – μ

)

uI –
(

δ

θ
+ ηθβP̃

)

Iw

+
(

ηθαP̃ –
δ

θ

)

uw + M(u, I, w), (.)

where

M(u, I, w) = (u + I)
(

–
r
K

u –
r
K

uI – αuw – βIw
)

+ ηw(–θβIw + θαuw).

In (.), we choose η = δ

αP̃θ such that ηθαP̃ – δ
θ

= .
Moreover, using the Cauchy inequality, we obtain

(

r –
r
K

S̃ – αP̃ – βP̃ – μ

)

uI ≤ r̃S
K

u +
K

r̃S

(

r –
r
K

S̃ – αP̃ – βP̃ – μ

)

I. (.)

Substituting (.) into (.) yields

LV + ηLV

≤ –
r̃S
K

u +
K

r̃S

(

r –
r
K

S̃ – αP̃ – βP̃ – μ

)

I –
(

r
K

S̃ + βP̃ + μ

)

I

–
(

δ

θ
+ ηθβP̃

)

Iw + M(u, I, w),

and so we have

ηLV + LV + ηLV

≤ η

{[

αP̃ +

δ

(

r –
r
K

S̃ – δ

)

+



(

r –
r
K

S̃ – βP̃ – μ

)( r
K

S̃ + βP̃ + μ

)–]

u

+

δ

(
r
K

S̃ + βP̃ + μ + δ

)

I –
δ

θ w +
(

u + I +

θ

w
)(

–
r
K

u –
r
K

uI – βIw
)}

–
r̃S
K

u +
K

r̃S

(

r –
r
K

S̃ – αP̃ – βP̃ – μ

)

I –
(

r
K

S̃ + βP̃ + μ

)

I

–
(

δ

θ
+ ηθβP̃

)

Iw + M(u, I, w)

≤
{

η

[

αP̃ +

δ

(

r –
r
K

S̃ – δ

)

+



(

r –
r
K

S̃ – βP̃ – μ

)( r
K

S̃ + βP̃ + μ

)–]

–
r̃S
K

}

u

+
[

K
r̃S

(

r –
r
K

S̃ – αP̃ – βP̃ – μ

)

+
η

δ

(
r
K

S̃ + βP̃ + μ + δ

)
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–
(

r
K

S̃ + βP̃ + μ

)]

I

–
ηδ

θ w –
(

δ

θ
+ ηθβP̃

)

Iw + M(u, I, w)

+ η

(

u + I +

θ

w
)(

–
r
K

u –
r
K

uI – βIw
)

.

Let

η =
r̃S
K

[

αP̃ +

δ

(

r –
r
K

S̃ – δ

)

+



(

r –
r
K

S̃ – βP̃ – μ

)( r
K

S̃ + βP̃ + μ

)–]–

,

so that

η

[

αP̃ +

δ

(

r –
r
K

S̃ – δ

)

+



(

r –
r
K

S̃ – βP̃ – μ

)( r
K

S̃ + βP̃ + μ

)–]

=
r̃S
K

.

Then we get

ηLV + LV + ηLV

≤ –
r̃S
K

u –
ηδ

θ w +
[

K
r̃S

(

r –
r
K

S̃ – αP̃ – βP̃ – μ

)

+
η

δ

(
r
K

S̃ + βP̃ + μ + δ

)

+
θ( δ

θ
+ ηθβP̃)

δη
–

(
r
K

S̃ + βP̃ + μ

)]

I + M(u, I, w)

+ η

(

u + I +

θ

w
)(

–
r
K

u –
r
K

uI – βIw
)

.

Finally, we obtain

LV = ηLV + LV + ηLV + ηLV

≤ –
r̃S
K

u –
ηδ

θ w +
[

K
r̃S

(

r –
r
K

S̃ – αP̃ – βP̃ – μ

)

+
η

δ

(
r
K

S̃ + βP̃ + μ + δ

)

+
θ( δ

θ
+ ηθβP̃)

δη
–

(
r
K

S̃ + βP̃ + μ

)

– η

(

βP̃ + μ – λ̃S –


σ ̃S

)]

I

+ M(u, I, w)

+ η

(

u + I +

θ

w
)(

–
r
K

u –
r
K

uI – βIw
)

+ η

(

λu – βw +


σ u + σ ̃Su

)

I.

Put

η =
[

K
r̃S

(

r –
r
K

S̃ – αP̃ – βP̃ – μ

)

+
η

δ

(
r
K

S̃ + βP̃ + μ + δ

)

+
θ( δ

θ
+ ηθβP̃)

δη

]

×
(

βP̃ + μ – λ̃S –


σ ̃S

)–

,
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so that

K
r̃S

(

r –
r
K

S̃ – αP̃ – βP̃ – μ

)

+
η

δ

(
r
K

S̃ + βP̃ + μ + δ

)

+
θ( δ

θ
+ ηθβP̃)

δη

– η

(

βP̃ + μ – λ̃S –


σ ̃S

)

= .

Then we get

LV = ηLV + LV + ηLV + ηLV

≤ –
r̃S
K

u –
(

r
K

S̃ + βP̃ + μ

)

I –
ηδ

θ w + M(u, I, w)

+ η

(

u + I +

θ

w
)(

–
r
K

u –
r
K

uI – βIw
)

+ η

(

λu – βw +


σ u + σ ̃Su

)

I.

Let λ̃ = min{ r̃S
K , r

K S̃ + βP̃ + μ, ηδ

θ }. Then

LV ≤ –̃λ
∣
∣x(t)

∣
∣ + o

(∣
∣x(t)

∣
∣).

Hence, LV (x) is negative-definite in a sufficiently small neighborhood of x =  for t ≥ .
From Lemma A. of Mao [] we therefore conclude that the zero solution of (.) is
stochastically asymptotically stable. �

7 Numerical simulations
In this section, we make numerical simulations to illustrate our results by using Milstein’s
higher-order method []. Variables and parameters used in the models of susceptible
prey-infected prey-predator population interaction are given by Chattopadhyay et al. [],
Table , where

r = , K = , β = ., μ = ., θ = ., δ = ..

First, we take α = ., λ = ., σ = .. In this case,

α = . <
δ

Kθ
= ., σ  = . <

(r + Kλ)(μ – Kλ)
λK = ..

We can therefore conclude by Theorem . that the equilibrium E = (, , ) of system
(.) is stochastically asymptotically stable in the large. The numerical simulations in Fig-
ure  support these results clearly.

Noting that

σ  = . > max

{
λ

K
= .,

λ

μ
= .

}

= .

and

α = . <
δ

Kθ
= .,
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Figure 1 Numerical simulation of the solution of
system (1.2) and its corresponding deterministic
system (1.1) with α = 0.004, λ = 0.003, σ = 0.045
and with the initial values S(0) = 30, I(0) = 10,
P(0) = 15.

we see that conditions (a) and (c) of Theorem . are satisfied. Therefore, by Theorem .,
for the initial values S() = , I() = , and P() = , the solution of system (.) obeys

lim sup
t→∞

log I(t)
t

≤ –. <  a.s.,

lim sup
t→∞

log P(t)
t

≤ –. <  a.s.,

lim
t→∞


t

∫ t


S(s) ds =  a.s.

The numerical simulations in Figure  support these results clearly, illustrating extinction
of the infected prey and the predator.

Next, we choose α = . and λ = .. Then

S =
μ

λ
= , I =

r( – S
K )

r
K + λ

= .,

and the conditions

μ = . < λK = ., α = . <
δ

Kθ
= .

are satisfied. Therefore, by Theorem ., P(t) tends to zero exponentially with probability
one. We see that the difference between the solution of system (.) and E = (, ., )
in time average is related to the intensity of the white noise. The weaker the white noise, the
smaller the difference. The numerical simulations in Figure  support these results clearly,
illustrating that the solution of system (.) is surrounding E randomly oscillating, and
the extent vibrating enhances gradually with gradual increase of σ .

Finally, we take α = ., λ = ., σ = .. In this case, we compute

S̃ =
δ

θα
= ., P̃ =

r
α

(

 –
S̃
K

)

= .,

δλ

μθ
= . < α = .,

μ

K
= . < λ = .,

σ  = . <
(βP̃ + μ – λ̃S)

S̃
= ..
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Figure 2 Numerical simulation of the solution of
system (1.2) and its corresponding deterministic
system (1.1) with initial value S(0) = 30, I(0) = 10,
P(0) = 15: (a) is with α = 0.004, λ = 0.015; (b) with
α = 0.004, λ = 0.015, σ = 0.002; (c) with α
= 0.004, λ = 0.015, σ = 0.004; (d) with α = 0.004,
λ = 0.015, σ = 0.006.

Figure 3 Numerical simulation of the solution of
system (1.2) and its corresponding deterministic
system (1.1) with α = 0.3, λ = 0.008, σ = 0.2 and
with initial values S(0) = 30, I(0) = 10, P(0) = 15.

We can therefore conclude, by Theorem ., that the equilibrium E = (., , .) of
system (.) is stochastically asymptotically stable. The numerical simulations in Figure 
support these results clearly.

8 Conclusion
In this paper, we have proposed and analyzed an ecoepidemiological model with linear
mass-action functional response perturbed by white noise. Based on this model, we mainly
have showed that system (.) has a unique positive global solution and investigated how
the four equilibria E, E, E, and E of system (.) will be under stochastic perturbation.
The key parameters are one ecological parameter α, predators’ attack rate on susceptible
prey, and one epidemiological parameter λ, the rate of infection.

(i) System (.) is unstable around E for all parametric values. We show that the equi-
librium E of system (.) is stochastically unstable in Theorem ..

(ii) If λ < μ

K and α < δ
Kθ

, then system (.) is globally asymptotically stable around the
equilibrium E. Theorem . shows that if Kλ < μ – λKσ

(r+Kλ) and α < δ
Kθ

, then the equilib-
rium E of system (.) is stochastically asymptotically stable in the large. Theorem .
shows that, under some conditions, the disease will die out, the predator population will
go into extinction, and the prey population will approach the carrying capacity K . Bio-
logically, it implies that if both the infection rate and the search rate of susceptible prey
are low, then the infected prey and predator population cannot survive, and the system
converges to the equilibrium where only healthy prey exists.

(iii) If λ > μ

K , then the equilibrium E of system (.) exists. Theorem . shows that the
difference between the solution of system (.) and E in time average is only relation with
the intensity of the white noise. The weaker the white noise, the smaller the difference.
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So there is approximate stability, provided that σ is sufficiently small. Biologically, this
implies that if the infection rate is too high and the search rate of susceptible population
is moderate, then the predator population cannot survive, and the system converges to
the equilibrium where susceptible prey and infected prey coexist in the form of a stable
equilibrium.

(iv) If λ > μ

K and α > δλ
μθ

, then system (.) is globally asymptotically stable around the
equilibrium E. We also show (Theorem .) that if λ > μ

K and α > δλ
μθ

, then, under cer-
tain conditions, the equilibrium E of system (.) is stochastically asymptotically stable.
Biologically, it implies that in case of higher infection rate and higher predation rate, all
trajectories with the default values converge to the disease-free equilibrium E, where sus-
ceptible prey and predator population coexist in the form of a stable equilibrium.

Appendix 1
In this section, we list some definitions and theory used in the previous sections.

In general, consider a d-dimensional stochastic differential equation

dx(t) = f
(
x(t), t

)
dt + g

(
x(t), t

)
dB(t) for t ≥ t. (A.)

Assume that f (, t) =  and g(, t) =  for all t ≥ t. So x(t) ≡  is a solution of equation
(A.), called the trivial solution or equilibrium position.

Definition A. ([]) (i) The trivial solution of system (A.) is said to be stochastically sta-
ble or stable in probability if for every pair of ε ∈ (, ) and r > , there exists δ = δ(ε, r, t) >
 such that

P
{∣
∣x(t; t, x)

∣
∣ < r for all t ≥ t

} ≥  – ε

whenever |x| < δ. Otherwise, it is said to be stochastically unstable.
(ii) The trivial solution is said to be stochastically asymptotically stable if it is stochasti-

cally stable; moreover, for every ε ∈ (, ), there exists δ = δ(ε, t) >  such that

P
{

lim
t→∞ x(t; t, x) = 

}
≥  – ε

whenever |x| < δ.
(iii) The trivial solution is said to be stochastically asymptotically stable in the large if it

is stochastically asymptotically stable; moreover, for all x ∈ Rd ,

P
{

lim
t→∞ x(t; t, x) = 

}
= .

Lemma A. (Strong law of large numbers []) Let M = {Mt}t≥ be a real-valued contin-
uous local martingale vanishing at t = . Then

lim
t→∞〈M, M〉t = ∞ a.s. ⇒ lim

t→∞
Mt

〈M, M〉t
=  a.s.

and also

lim sup
t→∞

〈M, M〉t

t
< ∞ a.s. ⇒ lim

t→∞
Mt

t
=  a.s.
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Lemma A. ([]) If there exists a positive-definite decreasing radially unbounded func-
tion V (x, t) ∈ C,(Rd × [t,∞]; R+) such that LV (x, t) is negative-definite, then the trivial
solution of equation (A.) is stochastically asymptotically stable in the large.

Lemma A. ([]) If there exists a positive-definite decreasing function V (x, t) ∈ C,(Sh ×
[t,∞]; R+) such that LV (x, t) is negative-definite, then the trivial solution of system (A.)
is stochastically asymptotically stable.

Appendix 2: The rest of the proof of Theorem 2.1
Let K̃ = μ + δ

θ
+ max{r + r

K , r
K + λ + β , θ (α + β)}B

η
+ Kσ . Then

∫ τk∧T


dV

(
S(t), I(t), P(t)

) ≤
∫ τk∧T


K̃ dt +

∫ τk∧T


σ
(
I(t) – S(t)

)
dB(t).

Taking expectations yields

E
[
V

(
S(τk ∧ T), I(τk ∧ T), P(τk ∧ T)

)]

≤ V
(
S(), I(), P()

)
+ E

∫ τk∧T


K̃ dt

≤ V
(
S(), I(), P()

)
+ K̃T . (.)

Set �k = {τk ≤ T} for k ≥ k. Then, by (.), P(�k) ≥ ε. Note that, for every ω ∈ �k , at least
one of S(τk ,ω), I(τk ,ω), and P(τk ,ω) equals either k or 

k , and hence V (S(τk ∧ T), I(τk ∧
T), P(τk ∧ T)) is no less than either

k –  – log k

or


k

–  – log

k

=

k

–  + log k.

Consequently,

V
(
S(τk ∧ T), I(τk ∧ T), P(τk ∧ T)

) ≥ (k –  – log k) ∧
(


k

–  + log k
)

.

It then follows from (.) and (.) that

V
(
S(), I(), P()

)
+ K̃T

≥ E
[
�k (ω)V

(
S(τk ∧ T), I(τk ∧ T), P(τk ∧ T)

)]

≥ ε

[

(k –  – log k) ∧
(


k

–  + log k
)]

,

where �k (ω) is the indicator function of �k(ω). Letting k → ∞ leads to the contradiction
∞ > V (S(), I(), P()) + K̃T = ∞. So we have τ∞ = ∞ a.s. This completes the proof of
Theorem ..



Zhang et al. Advances in Difference Equations  (2016) 2016:54 Page 24 of 24

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
The authors have contributed to the manuscript on an equal basis. All authors read and approved the final manuscript.

Author details
1School of Science, Changchun University, Changchun, 130022, China. 2Department of Mathematics, Yanbian University,
Yanji, 133002, China. 3College of Science, China University of Petroleum (East China), Qingdao, 266580, China. 4Nonlinear
Analysis and Applied Mathematics (NAAM)-Research Group, King Abdulaziz University, Jeddah, Saudi Arabia. 5School of
College of Basic Sciences, Changchun University of Technology, Changchun, 130021, China.

Acknowledgements
The work was supported by the Scientific and Technological Research Project of Jilin Province’s Education Department
(2015, No. 10; 2014, No. 294), the Education Science Research Project of Jilin Province (No. GH150104), Program for NSFC
of China (No. 11371085) and the Fundamental Research Funds for the Central Universities (No. 15CX08011A).

Received: 26 June 2015 Accepted: 28 January 2016

References
1. Hadeler, KP, Freedman, HI: Predator-prey population with parasite infection. J. Math. Biol. 27, 609-631 (1989)
2. Beltrami, E, Carroll, TO: Modelling the role of viral disease in recurrent phytoplankton blooms. J. Math. Biol. 32,

857-863 (1994)
3. Hethcote, HW, Wang, W, Han, L, Ma, Z: A predator-prey model with infected prey. Theor. Popul. Biol. 66, 259-268

(2004)
4. Xiao, Y, Chen, L: Modelling and analysis of a predator-prey model with disease in the prey. Math. Biosci. 171, 59-82

(2001)
5. Venturino, E: Epidemics in predator-prey models: disease in the predators. IMA J. Math. Appl. Med. Biol. 19, 185-205

(2002)
6. Venturino, E: Epidemics in predator-prey models: disease in the prey. In: Arino, O, Axelrod, D, Kimmel, M, Langlais, M

(eds.) Mathematical Population Dynamics: Analysis of Heterogeneity, vol. 1, pp. 381-393. Wuerz Publishing, Winnipeg
(1995)

7. Chattopadhyay, J, Arino, O: A predator-prey model with disease in the prey. Nonlinear Anal. 36, 747-766 (1999)
8. Chattopadhyay, J, Bairagi, N: Pelicans at risk in Salton Sea - an eco-epidemiological study. Ecol. Model. 136, 103-112

(2001)
9. Chattopadhyay, J, Pal, S: Viral infection on phytoplankton zooplankton system - a mathematical model. Ecol. Model.

151, 15-28 (2002)
10. Chattopadhyay, J, Srinivasu, PDN, Bairagi, N: Pelicans at risk in Salton Sea - an eco-epidemiological model-II. Ecol.

Model. 167, 199-211 (2003)
11. Chattopadhyay, J, Roy, PK, Bairagi, N: Role of infection on the stability of a predator-prey system with several response

functions - a comparative study. J. Theor. Biol. 248, 10-25 (2007)
12. Ji, CY, Jiang, DQ, Shi, NZ: Multigroup SIR epidemic model with stochastic perturbation. Physica A 390, 1747-1762

(2011)
13. Ji, CY, Jiang, DQ, Yang, QS, Shi, NZ: Dynamics of a multigroup SIR epidemic model with stochastic perturbation.

Automatica 48, 121-131 (2012)
14. Ji, CY, Jiang, DQ: Analysis of a predator-prey model with disease in the prey. Int. J. Biomath. 6, 1350012 (2013)
15. Yuan, CJ, Jiang, DQ: Stochastically asymptotically stability of the multi-group SEIR and SIR models with random

perturbation. Commun. Nonlinear Sci. Numer. Simul. 17, 2501-2516 (2012)
16. Li, X, Mao, X: Population dynamical behavior of non-autonomous Lotka-Volterra competitive system with random

perturbation. Discrete Contin. Dyn. Syst., Ser. A 24, 523-545 (2009)
17. Mao, X: Stochastic Differential Equations and Applications. Horwood, Chichester (1997)
18. Higham, DJ: An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Rev. 43,

525-546 (2001)


	The stability of a predator-prey system with linear mass-action functional response perturbed by white noise
	Abstract
	MSC
	Keywords

	Introduction
	Existence and uniqueness of a positive solution
	Stochastic instability around the equilibrium E0=(0,0,0)
	Global asymptotic stability around the equilibrium  E1=(K,0,0)
	Asymptotic behavior around the equilibrium E2=(S, I, 0) of system (1.1)
	Stochastic asymptotic stability around the equilibrium E3=(S,0,P)
	Numerical simulations
	Conclusion
	Appendix 1
	Appendix 2: The rest of the proof of Theorem 2.1
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


