344 research outputs found

    Importance Sampling BRDF Derivatives

    Full text link
    We propose a set of techniques to efficiently importance sample the derivatives of several BRDF models. In differentiable rendering, BRDFs are replaced by their differential BRDF counterparts which are real-valued and can have negative values. This leads to a new source of variance arising from their change in sign. Real-valued functions cannot be perfectly importance sampled by a positive-valued PDF and the direct application of BRDF sampling leads to high variance. Previous attempts at antithetic sampling only addressed the derivative with the roughness parameter of isotropic microfacet BRDFs. Our work generalizes BRDF derivative sampling to anisotropic microfacet models, mixture BRDFs, Oren-Nayar, Hanrahan-Krueger, among other analytic BRDFs. Our method first decomposes the real-valued differential BRDF into a sum of single-signed functions, eliminating variance from a change in sign. Next, we importance sample each of the resulting single-signed functions separately. The first decomposition, positivization, partitions the real-valued function based on its sign, and is effective at variance reduction when applicable. However, it requires analytic knowledge of the roots of the differential BRDF, and for it to be analytically integrable too. Our key insight is that the single-signed functions can have overlapping support, which significantly broadens the ways we can decompose a real-valued function. Our product and mixture decompositions exploit this property, and they allow us to support several BRDF derivatives that positivization could not handle. For a wide variety of BRDF derivatives, our method significantly reduces the variance (up to 58x in some cases) at equal computation cost and enables better recovery of spatially varying textures through gradient-descent-based inverse rendering

    A Single-Layer 10-30GHz Reflectarray Antenna for the Internet of Vehicles

    Get PDF

    Decays of a Tcc+T_{cc}^+ heavy-quark-spin molecular partner to DDπD^{\ast}D\pi

    Full text link
    Starting from the hypothesis that the Tcc+T_{cc}^+ discovered at LHCb is a D+D0/D0D+D^{\ast+} D^0/D^{\ast 0}D^+ hadronic molecule, we consider the partial width of its heavy quark spin partner, the Tcc+T_{cc}^{\ast +} as a D+D0D^{\ast +} D^{\ast 0} shallow bound state, decaying into the DDπD^{\ast}D\pi final states including the contributions of the DDD^{\ast} D and DπD^{\ast} \pi final state interaction by using a nonrelativistic effective field theory. Because of the existence of the Tcc+T_{cc}^+ pole, the I=0I=0 DDD^{\ast} D rescattering contributes at the leading order, the same order as that of the tree diagram, while the DπD^{\ast} \pi rescattering contribution is one magnitude smaller. The partial widths of Tcc+D+D0π0T_{cc}^{\ast +} \to D^{\ast +} D^0 \pi^0, D0D+π0D^{\ast 0}D^+\pi^0, and D0D0π+D^{\ast 0}D^0\pi^+ are about 44 keV, 20 keV, and 18 keV, respectively.Comment: 19 pages, 4 figues. Comments are welcom

    An Ultra-Wideband Circularly Polarized Asymmetric-S Antenna With Enhanced Bandwidth and Beamwidth Performance

    Get PDF
    This paper introduces an ultra-wideband circularly polarized (CP) asymmetric-S antenna with wide axial ratio beamwidth (ARBW) for C-band applications. The proposed antenna is realized by bending a linearly polarized dipole into asymmetric-S shape with variable trace width, which achieves CP radiation. Unlike the reported symmetric-S antenna, the proposed antenna is constituted with two unequal curved arms to enhance the bandwidth and beamwidth performances. Compared with the symmetric-S antenna, the proposed antenna demonstrates much wider AR bandwidth and wider ARBW over broader frequency range. A prototype is fabricated to verify the design principle. The measured and simulated results are very consistent and both indicate that the proposed antenna has a wide impedance bandwidth (VSWR <; 2) of 70.2% (3.58 to 7.46 GHz), and a wide 3-dB AR bandwidth of 84.8% (2.75 to 6.8 GHz). Moreover, maximum ARBW of 153° is achieved, and a 3-dB ARBW of more than 100° is maintained within a wide operation bandwidth of 46.3% (3.65-5.85 GHz)

    Neural Free-Viewpoint Relighting for Glossy Indirect Illumination

    Full text link
    Precomputed Radiance Transfer (PRT) remains an attractive solution for real-time rendering of complex light transport effects such as glossy global illumination. After precomputation, we can relight the scene with new environment maps while changing viewpoint in real-time. However, practical PRT methods are usually limited to low-frequency spherical harmonic lighting. All-frequency techniques using wavelets are promising but have so far had little practical impact. The curse of dimensionality and much higher data requirements have typically limited them to relighting with fixed view or only direct lighting with triple product integrals. In this paper, we demonstrate a hybrid neural-wavelet PRT solution to high-frequency indirect illumination, including glossy reflection, for relighting with changing view. Specifically, we seek to represent the light transport function in the Haar wavelet basis. For global illumination, we learn the wavelet transport using a small multi-layer perceptron (MLP) applied to a feature field as a function of spatial location and wavelet index, with reflected direction and material parameters being other MLP inputs. We optimize/learn the feature field (compactly represented by a tensor decomposition) and MLP parameters from multiple images of the scene under different lighting and viewing conditions. We demonstrate real-time (512 x 512 at 24 FPS, 800 x 600 at 13 FPS) precomputed rendering of challenging scenes involving view-dependent reflections and even caustics.Comment: 13 pages, 9 figures, to appear in cgf proceedings of egsr 202

    Prophylactic administration of parenteral steroids for preventing airway complications after extubation in adults: meta-analysis of randomised placebo controlled trials

    Get PDF
    Objective To determine whether steroids are effective in preventing laryngeal oedema after extubation and reducing the need for subsequent reintubation in critically ill adults

    ANALYSIS OF FACTORS CAUSING WATER DAMAGE TO LOESS DOUBLE-ARCHED TUNNEL BASED ON TFN-AHP

    Get PDF
    In order to analysis the factors causing water damage to loess double-arched tunnel, this paper conducts field investigation on water damage to tunnels on Lishi-Jundu Expressway in Shanxi, China, confirms its development characteristics, builds an index system (covering 36 evaluation indexes for construction condition, design stage, construction stage, and operation stage) for the factors causing water damage to loess double-arched tunnel, applies TFN-AHP (triangular fuzzy number-analytic hierarchy process) in calculating the weight of indexes at different levels, and obtains the final sequence of weight of the factors causing water seepage to loess double-arched tunnel. It is found out that water damage to loess double-arched tunnel always develops in construction joints, expansion joints, settlement joints, and lining joints of tunnel and even around them; there is dotted water seepage, linear water seepage, and planar water seepage according to the trace and scope of water damage to tunnel lining. The result shows that water damage to loess double-arched tunnel mainly refers to linear water seepage, planar water seepage is also developed well, and partition and equipment box at the entrance and exit of tunnel are prone to water seepage; construction stage is crucial for controlling water damage to loess double-arched tunnel, atmospheric precipitation is the main water source, and the structure defect of double-arched tunnel increases the possibility of water seepage; the final sequence for weight of various factors is similar to the actual result

    Poly(benzimidazobenzophenanthroline)-Ladder-Type Two-Dimensional Conjugated Covalent Organic Framework for Fast Proton Storage

    Get PDF
    Electrochemical proton storage plays an essential role in designing next-generation high-rate energy storage devices, e.g., aqueous batteries. Two-dimensional conjugated covalent organic frameworks (2D c-COFs) are promising electrode materials, but their competitive proton and metal-ion insertion mechanisms remain elusive, and proton storage in COFs is rarely explored. Here, we report a perinone-based poly(benzimidazobenzophenanthroline) (BBL)-ladder-type 2D c-COF for fast proton storage in both a mild aqueous Zn-ion electrolyte and strong acid. We unveil that the discharged C−O− groups exhibit largely reduced basicity due to the considerable π-delocalization in perinone, thus affording the 2D c-COF a unique affinity for protons with fast kinetics. As a consequence, the 2D c-COF electrode presents an outstanding rate capability of up to 200 A g−1 (over 2500 C), surpassing the state-of-the-art conjugated polymers, COFs, and metal–organic frameworks. Our work reports the first example of pure proton storage among COFs and highlights the great potential of BBL-ladder-type 2D conjugated polymers in future energy devices

    Interference Analysis in Multi-Numerology OFDM Systems: A Continuous-Time Approach

    Get PDF
    Multi-numerology multi-carrier (MN-MC) techniques are considered as essential enablers for RAN slicing in fifth-generation (5G) communication systems and beyond. However, utilization of mixed numerologies breaks the orthogonality principle defined for single-numerology orthogonal frequency division multiplexing (SN-OFDM) systems with a unified subcarrier spacing. This leads to interference between different numerologies, i.e., inter-numerology interference (INI). This paper develops metrics to quantify the level of the INI using a continuous-time approach. The derived analytical expressions of INI in terms of mean square error (MSE) and error vector magnitude (EVM) directly reveal the main contributing factors to INI, which can not be shown explicitly in a matrix form INI based on discrete-time calculations. Moreover, the study of power offset between different numerologies shows a significant impact on INI, especially for high order modulation schemes. The finding in this paper provides analytical guidance in designing multi-numerology (MN) systems, for instance, developing resource allocation schemes and interference mitigation techniques
    corecore