261,404 research outputs found
Asymptotic stability of stochastic differential equations driven by Lévy noise
Using key tools such as Ito's formula for general semimartingales, Kunita's moment estimates for Levy-type stochastic integrals, and the exponential martingale inequality, we find conditions under which the solutions to the stochastic differential equations (SDEs) driven by Levy noise are stable in probability, almost surely and moment exponentially stable
Approximate solutions of hybrid stochastic pantograph equations with Levy jumps
We investigate a class of stochastic pantograph differential equations with Markovian switching and Levy jumps. We prove that the approximate solutions converge to the true solutions in 퐿 2 sense as well as in probability under local Lipschitz condition and generalize the results obtained by Fan et al. (2007), Milošević and Jovanović (2011), and Marion et al. (2002) to cover a class of more general stochastic pantograph differential equations with jumps. Finally, an illustrative example is given to demonstrate our established theory
Approximate solutions of hybrid stochastic pantograph equations with Levy jumps
We investigate a class of stochastic pantograph differential equations with Markovian switching and Levy jumps. We prove that the approximate solutions converge to the true solutions in 퐿 2 sense as well as in probability under local Lipschitz condition and generalize the results obtained by Fan et al. (2007), Milošević and Jovanović (2011), and Marion et al. (2002) to cover a class of more general stochastic pantograph differential equations with jumps. Finally, an illustrative example is given to demonstrate our established theory
Almost sure exponential stability of numerical solutions for stochastic delay differential equations
Using techniques based on the continuous and discrete semimartingale convergence theorems, this paper investigates if numerical methods may reproduce the almost sure exponential stability of the exact solutions to stochastic delay differential equations (SDDEs). The important feature of this technique is that it enables us to study the almost sure exponential stability of numerical solutions of SDDEs directly. This is significantly different from most traditional methods by which the almost sure exponential stability is derived from the moment stability by the Chebyshev inequality and the Borel–Cantelli lemma
Delay-dependent robust stability of stochastic delay systems with Markovian switching
In recent years, stability of hybrid stochastic delay systems, one of the important issues in the study of stochastic systems, has received considerable attention. However, the existing results do not deal with the structure of the diffusion but estimate its upper bound, which induces conservatism. This paper studies delay-dependent robust stability of hybrid stochastic delay systems. A delay-dependent criterion for robust exponential stability of hybrid stochastic delay systems is presented in terms of linear matrix inequalities (LMIs), which exploits the structure of the diffusion. Numerical examples are given to verify the effectiveness and less conservativeness of the proposed method
Differential equations on unitarity cut surfaces
We reformulate differential equations (DEs) for Feynman integrals to avoid
doubled propagators in intermediate steps. External momentum derivatives are
dressed with loop momentum derivatives to form tangent vectors to unitarity cut
surfaces, in a way inspired by unitarity-compatible IBP reduction. For the
one-loop box, our method directly produces the final DEs without any
integration-by-parts reduction. We further illustrate the method by deriving
maximal-cut level differential equations for two-loop nonplanar five-point
integrals, whose exact expressions are yet unknown. We speed up the computation
using finite field techniques and rational function reconstruction.Comment: 17 pages, 3 figures; v2: added more results and references, final
journal versio
On-line Non-stationary Inventory Control using Champion Competition
The commonly adopted assumption of stationary demands cannot actually reflect
fluctuating demands and will weaken solution effectiveness in real practice. We
consider an On-line Non-stationary Inventory Control Problem (ONICP), in which
no specific assumption is imposed on demands and their probability
distributions are allowed to vary over periods and correlate with each other.
The nature of non-stationary demands disables the optimality of static (s,S)
policies and the applicability of its corresponding algorithms. The ONICP
becomes computationally intractable by using general Simulation-based
Optimization (SO) methods, especially under an on-line decision-making
environment with no luxury of time and computing resources to afford the huge
computational burden. We develop a new SO method, termed "Champion Competition"
(CC), which provides a different framework and bypasses the time-consuming
sample average routine adopted in general SO methods. An alternate type of
optimal solution, termed "Champion Solution", is pursued in the CC framework,
which coincides the traditional optimality sense under certain conditions and
serves as a near-optimal solution for general cases. The CC can reduce the
complexity of general SO methods by orders of magnitude in solving a class of
SO problems, including the ONICP. A polynomial algorithm, termed "Renewal Cycle
Algorithm" (RCA), is further developed to fulfill an important procedure of the
CC framework in solving this ONICP. Numerical examples are included to
demonstrate the performance of the CC framework with the RCA embedded.Comment: I just identified a flaw in the paper. It may take me some time to
fix it. I would like to withdraw the article and update it once I finished.
Thank you for your kind suppor
- …
