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We investigate a class of stochastic pantograph differential equations with Markovian switching and Levy jumps. We prove that
the approximate solutions converge to the true solutions in L* sense as well as in probability under local Lipschitz condition and
generalize the results obtained by Fan et al. (2007), Milo$evi¢ and Jovanovi¢ (2011), and Marion et al. (2002) to cover a class of
more general stochastic pantograph differential equations with jumps. Finally, an illustrative example is given to demonstrate our

established theory.

1. Introduction

Stochastic delay differential equations (SDDEs) have come
to play an important role in many branches of science and
industry. Such models have been used with great success in a
variety of application areas, including biology, epidemiology,
mechanics, economics and finance. Similar to SDEs, an
explicit solution can rarely be obtained for SDDEs. It is
necessary to develop numerical methods and to study the
properties of these methods. There are many results for the
numerical solutions of SDDEs [1-12].

Recently, as a special case of SDDEs, a class of stochastic
pantograph delay equations (SPEs) has been received a great
deal of attention and various studies have been carried out
on the convergence of SPEs [13-16]. However, all equations
of the above-mentioned works are driven by white noise
perturbations with continuous initial data, and white noise
perturbations are not always appropriate to interpret real data
in a reasonable way. In real phenomena, the state of stochastic
pantograph delay system may be perturbed by abrupt pulses
or extreme events. A more natural mathematical framework
for these phenomena takes into account other than purely
Brownian perturbations. In particular, we incorporate the
Levy perturbations with jumps into stochastic pantograph
delay system to model abrupt changes.

The study of the convergence of the numerical solutions
to SDDEs with jumps is in its infancy [17-20], and there is no
research on the numerical solutions to SPEs with Markovian
switching and Levy jumps (SPEwMsL]Js). In this paper, we
study the strong convergence of the Euler method for a
class of SPEs with Markovian switching and Levy jumps
(SPEwMsLJs). SPEwMsL]Js may be regarded as an extension
of SPEs with Markovian switching and SPEs with Levy jumps.
The main aim is to prove that the Euler approximate solutions
converges to the true solutions for SPEwMsLJs in L* sense.
On the other hand, we study the convergence in probability
of the Euler approximate solutions to the true solutions under
local Lipschitz condition and some additional conditions in
term of Lyapunov-type functions. It should be pointed out
that the proof for SPEwMSsLJs is certainly not a straightfor-
ward generalization of that for SPEs and SPEwMs without
Levy jumps. Although the way of analysis follows the ideas of
[21], we need to develop several new techniques to deal with
Levy jumps. Some known results in Fan et al. [14], Milosevi¢
and Jovanovic [16], and Marion et al. [21] are generalized to
cover a class of more general SPEwMsLJs.

The paper is organized as follows. In Section 2, we intro-
duce some notations and hypotheses concerning (4), and the
Euler methods is used to produce a numerical solutions. In
Section 3, we establish some useful lemmas and prove that



the approximate solutions converge to the true solutions of
SPEwMsLJs in L? sense. By applying Theorem 4, we study the
convergence in probability of the approximate solutions to
the true solutions in Section 4. Finally, we give an illustrative
example in Section 5.

2. Preliminaries and the Approximate Solution

Let (Q, #, P) be a complete probability space with a filtration
(F )10 satisfying the usual condition; that is, the filtration
(#,) is continuous on the right and (%) contains all P-null
sets. Let {W(t), t > 0} be a d-dimensional Wiener process
defined on the probability space (Q, %, P) adapted to the
filtration (%,).so. Let D([0,T],R") denote the family of
function f from [0,T] — R" that are right continuous and
have limits on the left. Also D([0,T], R") is equipped with
the norm [ f|| = supy,.r|f(t)], where | - | is the Euclidean
norm in R% that is, |[x| = VxTx (x € R").LetT > 0,
P > 2, and ZF([0,T]; R") denote the family of all R"-valued
measurable (#,)-adapted processes f = {f(f)}i<r such
that E supy,.r| f(t)|” < co. Let (R, B(R")) be a measurable
space and 7(du) a o-finite measure on it. Let p = p(t), and let
teD, be a stationary &,-Poisson point process on R" with
characteristic measure 7. Denote by N(dt, du) the Poisson
counting measure associated with p; that is,

NnBA)= ) 14(p(s)- M

ser,sst

We refer to Mao [3] for the properties of a Wiener process
and SDDEs and to Ikeda and Watanabe [22] for the details
on Poisson point process.

Let r(¢), t > 0, be a right-continuous Markov chain on
the probability space (Q, &, P) taking values in a finite state
space § = {1,2,..., N} with generator I' = (y;j) y given by

P(rt+A)=j|r(t)=i)

ifi#j, 2)

{VijA +o(A),

1+y,-jA+o(A), ifi=j,

where A > 0. Here y;; > 0 is the transition rate from i to j,
i# j, while

Yii = _Z%j~ (3)

j#i

We assume that Markov chain r(:) is independent of the
Brownian motion W(-) and compensated Poisson random
measure N(-, ). It is known that almost every sample path of
r(+) is right-continuous step function with a finite number of
simple jumps in any finite subinterval of R, .
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In this paper, we study the following hybrid stochastic
pantograph equations with Levy jump:

dX (1) = f(X(t),X(qt),r(t))dt
+g(X @), X (qt),r®)dW (t)

— (4)
+j h(X(@),X(qt),r(t),u) N (dt,du),
RYI
X (0) = X,
where 0 < g < 1and
f:R"xR"xS — R",
g:R"xR"xS— R™", (5)

h:R"xR'xSxR"'— R",

W(t) is a standard m-dimensional Brownian motion, and
N(dt, du) is the compensated Poisson random measure given

by
N (dt,du) = N (dt, du) — 7 (du) dt. (6)

Here m(du) is the Levy measure associated to N.

Let C*(R" x S, R,) denote the family of all nonnegative
functions V(x,i) on R" x S which are continuously twice
differentiable in x. For each V. € C*(R" x S,R ), define an
operator LV from R" x R" x S to R by

LV (x, y,i)
=V, (x,0) f (x, y,i)
+ %trace (9" (%, 3,) Vi (3,1) g (%, 351)]
+j [V (x+h(x,y,u),i)—V(x,i) @

-V, (x,i) h(x, y,u)] 7 (du)

N
+ ZYijV (%, j)>
=1
where
. oV (x,1) aV (x, i))
V. (x,i) = yees S
x (1) < 0x, 0x,,

O’V (x,1) ®)
Vet =(Gee?)
=] nxn

In order to define the Euler approximate solution of (4),
we need the property of embedded discrete Markov chain.
The following lemma [23] describes this property.

Lemmal. Forh > 0 andn > 0, then {rZ, n=0,1,2,...}isa
discrete Markov chain with the one-step transition probability
matrix

P = (B (), =" ©)
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Given a step size h > 0, the discrete Markov chain
{ri’, n=0,1,2,...} can be simulated as follows (see Mao and
Yuan [24]). Let r(0) = i, and generate a random number {;
which is uniformly distributed in [0, 1]. If {; = 1, then let

ri‘ =i, = N or otherwise find the unique integer i, € S for

i-1 i
2&AMSQ<2&AM (10)
j= j=

and let ri’ = i,, where we set Z?:l P, j(h) = 0 as usual. Gene-
rate independently a new random number {, which is again
uniformly distributed in [0, 1]. If {, = 1 then let ré’ =i, =N

or otherwise find the unique integer i, € S for

i1 i
DR <G< YR (1)
j=1 =1

and let ¥ = i,. Repeating this procedure, a trajectory of

{”:’ n =0,1,2,...} can be generated. This procedure can be
carried out independently to obtain more trajectories.

Now we define the Euler approximate solution to (4) with
discrete Markov chain {r,’; = r(nh),n = 0,1,2,...}. For
system (4), the discrete approximation is given by the iterative
scheme

h
Y=Y, + f (Yn’Y[qn]’rn) h
h
+ g (Y Yigpr 7 ) AW, (12)

+ J " h (YH’Y[qn]r 1’:, M) ﬁ(h, du) s

with initial value Y, = X(0), and [u] represents the integer
part of u. Here t, = nh forn > 0. We have Y, = X(t,),
Yigm = X(qt,), AW, = W(t,)- W(t,), and N(h,du) =
N(t,,,du) - N(t,, du).
Let us introduce the following notations:
Zl (t) = Yn)

Zy(t) =Ygy, TMO=1l (13)

fort € [t, t,,;)- Then we define the continuous Euler ap-
proximate solution as follows:

Y () =Y (0)+ JO F(Z,(5), 2, (), (s)) ds

+ J 9(Z,(s),Z,(s),7 (5)) AW (s)
’ (14)

t
+ J J h(Z,(s),Z,(s),7(s),u) N (ds,du),
0 Jre
0<t<T,
which interpolates the discrete approximation (7).

In order to establish the strong convergence theorem, we
suppose the following assumptions are satisfied.

Assumption 2. For eachi € Sandu € R”,

|£(0,0,i)]* = |9(0,0,i)|" = Ln 1h(0,0,i,u)*r (du) = 0.
(15)

Assumption 3. For every d > 1, there exists a positive con-
stant K; such that for all x;, y;,x,, ¥,,u € R*andi € S, |x,|V
|y1| \% |x2| \% |y2| <d,

lf (%1, y11) = f(xz’}’z’i)|2

v |g (X1 y151) — g (xz))’z)i)lz
) NS (16)
v Ln |k (31, 101 11) = h (53 0 6 0) [ (du)

<Ky (|x1 - lez + |- )’2|2)'

3. Strong Convergence of Numerical Solutions

In this section, we will prove that the Euler approximate solu-
tions converge to the true solutions in L? sense under the local
Lipschitz condition.

Theorem 4. If Assumptions 2 and 3 hold, then the Euler
approximate solutions converge to the true solutions of (4) in
L? sense with order 1/2; that is, there exists a positive constant
C, such that

E| sup X(t)-Y @) | <Cy[h+o()], (17)

0<t<TATy

where 0; = inf{t € [0,T] : |X(¢)| = d} and p; = inf{t €
[0,T]:|Y(t)| = d}, and let T, = 0, A py.

The proof of Theorem 4 is very technical, so we present
some useful lemmas.

Lemma 5. Under Assumptions 2 and 3, for any t € [0,T] and
P > 2, there exists a positive constant C,(d) such that

t
E J Y (sA1y) — Z, (sazy)Pds < C, (d) KT, (18)
0

where C,(d) is a positive constant independent of the step size

Proof. For any t € [0,T A 7,], there exists an integer n such
that ¢t € [nh, (n + 1)h). Then

Y (t) - Z, (t)
= Y(t) - Yn
= J f (Zl (S) ,Zz (5) >F(S)) dS
nh (19)

+ J 9(Z,(s),2Z,(s),7(s)) dW (s)

nh

+ Jt J h(Z,(s),Z,(s),7(s),u) N (ds,du).

nh JR



Using the inequality |a + b + ¢|” < 37 '[|al” + 3|b|” + 3|c|"],
we get

E [ sup  |Y (1) - Z, (t)|P]

nh<t<(n+1)h

Jt f(Zl (s),

< 37! [E( sup
nh

nh<t<(n+1)h

Z,(s),7(s))ds

)

+3M1E

t
x( sup J g(Z,(s),
nh<t<(n+1)h | Jnh

P
Z,(s),7(s)) dW (s) >
P-1 t h |
" E( hsf;np+1)h Jnh J " (Zl (5)
Z, (s),7(s),u)

xN (ds, du)

)
By the Hélder inequality and Assumptions 2 and 3, we have
E < sup )
nh<t<(n+1)h
P

(n+1)h
<HE J ECACRACRIOE

(20)

J F(Z,(5),2Z,(5),7(s))ds

(n+1)h
I CACRACRIO)EE

nh

p (n+1)h

s j (1f (29,2, 9,7 )] "
p (n+1)h

sh‘lEjh 21f (2, (9,2, (5),7(5))

~£(0,0),7(s)|”
2|£(0,0),7 ()] ds

(2K, (12, &) + |2, )] " d

(n+1)h
< hP‘lEJ
nh

(n+1)h
<" 2PKEPE J ) 1z, )" +12,9)|") ds

(21)
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By the definition of 7,4, we have |[Y(¢)| < d,t € [0,7; AT]. so
we get that |Z,(t)[F < d”, |Z,(t)|F < d*, and
P
) (22)

By using the Burkholder-Davis-Gundy inequality and
Assumptions 2 and 3, we have
)

E( sup J g(Z, (s
nh<t<(n+1)h

(n+1)h )
SCPE[Jh |9(Z, (s),2Z,(5),7(s))] ds]

E( sup J f(Z,(s),Z,(s),7(s))ds
nh<t<(n+1)hl Jnh

< 2PdP k5"

)>Z,(s),7(s)) dW (s)

P/2

(23)
(/21 (n+1)h p
< Cph E“h |9 (21 (), 2, (9),7(5))] ds]

P 4P -P/2, P2
SCPZde h's,

P

Jt J : h(Z,(s),Z,(s),7(s),u) N (ds, du)

nh JR

E ( sup
nh<t<(n+1l)h

(n+1)h ) P2
< CPE[Lh Ln |h(Z,(s),2Z,(s),7(s),u)|  (du) ds]

< CphPPE

L1

< CphPPE

P2
h(Z,(5), 2 (5),7 () )] ﬂ(du)] ds

(n+1)h
J ”n2|h(Zl(5),Zz(S),7(S)’”)
~h(0,0,7 (s), )|

P/2
+|h(0,0,7(s),u)|2]ﬂ(du)} ds

(P/2)-1 (n+1)h 2 2\1P/2
< Cph Ejh [2K, (12, & + |2, )] ds
"

P 4P,-P/2; P/2
scpszd h'e.

(24)
Combing (22)-(24) together, we have
ElY (t) - Z, ([
P-1[P 4P-P[21 P P 4P 1-P[21 P[2
<37 2% Ky PHT v 2C 27AKPHT]L s

tAT,
E j IV (s) - Z, (o) ds < C, (d) KPP,
0

where C,(d) = 3Pt [2J‘DdPK§/2 + 2Cp2PdPK5/2]. The proof is
complete. O
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Lemma 6. Under Assumptions 2 and 3, for any t € [0, T] and
P > 2, then

B Lt ¥ (q(s A1) = Zy (s Axy)[Pds < C, () KPPT, (26)

where C,(d) is a positive constant independent of the stepsize

h.
The proof of this lemma is similar to that of Lemma 5.

Lemma 7. Under Assumptions 2 and 3, for any t € [0,T] and
P > 2, then

B[ I (2 (A m) 2o (s A r (s 2)

—f(Zy (A1), Z, (s ATy) 7 (s Ary))| ds

VE| lo(Zi (7). Za(sAma) o (A7)

~9(2) (s A7), Zy (s A 1g) F (s Ag))| s

VEJOt JRn |h(Z, (sATy),Z, (sATy) T (sATy),u)

“h(Z, (sAT0), Z, (s ATy) F (s Ay) )|

x 7 (du) ds < C; (d) [hP/z to (hp/z)] )
(27)

where C5(d) is a positive constant independent of the stepsize

h.
The proof of this lemma is similar to that of [16, 24].
Proof of Theorem 4. Combining (4) and (14), one has
X () -Y(t)
- [ x©.x (@9 .r)
~f(Z1(5),25(5),7(s))] ds
[ 1o (x 9. x(49).r9)
~9(Z,(5),Z,(5),7(5))] dW (s)
[ o x @000

~h(Z,(5),Z,(s),7(s),u)] N (ds, du) .
(28)

Then applying the generalized Itd’s formula, we can show that

IX (1) -Y @

t

=2j X ()~ Y (5)]
0

x|f (X (), X (gs) 7 (s))
- f(Z,(5),2,(5),7(s))| ds

# [ 10X @ X(@9).r) - 9(2,.2, 9.7 ) ds

t
+H (X (s), X (qs) 7 (s) ,u)
0 JrR"

“h(Z,(s), Z, (5), 7 (s), u)[" 7 (dus) ds

t

+2j0 X ()~ Y (s)]

X |g (X (s),X (gs),r(s))

- 9(Z,(5), 2, (s),7(s))| dW (s)
t
+ L Lﬂ 21X (s) - Y (5)]
x [h (X (s), X (gs)7(s),u)
~h(Z,(5),2Z,(s),7(s),u)| ] N (ds, du)
t
e ] @ x @90
0 JR"

~h(Z,(s), Z5 (5), 7 (s), u)|" N (ds, du) .
(29)

Hence, for any ¢ € [0, T], we get

E sup [X(t)-Y ()

0<t<TAt,

TAty
<E J 1X (s) = Y (s)|*ds
0

T NT
B[ (00 X (a9)r )
~f(2,(5),2,(5) ,7(5))|2d5
T NT
B[ 19 (X9, X (@9, 9)
-9(Z,(s),2Z,(s) ,7(5))|2ds

TIAT
+EJ J |h (X (s),X (gs),7(s),u)
o Jr



“h(Z, (s), Z, (s), 7 (s), w)|" 7 (dus) ds

t
+2E sup J IX(sATy) =Y (sAty)
0<t<t AT JO

x|g (X (s A7), X (q(sA1g))57(5))
-9(Z,(s),2Z,(s) ,F(S))i dw (s)

+E sup

JJ (21X (s) =Y (s)|
o<t<t AT JO JR”
x |h (X (s), X (qs) .7 (), 10)
~h(Z,(5),Z,(s),7(s),u)|]

x N (ds, du)

+E sup

0<t<TyNT

t
JJ |h(X (s), X (gs),7(s),u)
0 Jr
_h(Zl (5),22(5),?(5),14”2
x N (ds, du) .

(30)

By Assumption 3 and Lemmas 5-7, we have
Ty NT
E[ 71 (X)X (@) s)
~f(2:(5),25(9),7 ()| ds

T NT
<2E [T IF(X©. X (9.7 )

0

~f(2,(5),2,(9),7(9)[ds

TIAT
+2EJ £ (21(8),2,(5),7(5))

0

~f(2,(5), 2, (5),7(s))ds
TIAT

< 2K,E J (X -2, 9

0
+|X (gs) - Z, (9)") ds +2C; (d) h

< 2K,E

T AT
|7 ex@-yer e -z.6F)

0
+ (2% (g5) - Y (gs)|” +2|Y (95) - Z, (5)[") ds
+2C, (d) [h+o ()]
< 4K, [Cy (d) + Cy ()] hT +2C; (d) [h + o (h)]
TINT

+ 8K, J Esup|X (u)-Y ()| ds.

0 0<u<s

(31)
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Similarly, by Assumption 3 and Lemmas 5-7, we obtain

TIAT
[ 19(X(9.X (9. 9)

~9(2,(5), 2, (s),7 ()| ds
< 4K, [C, (d) + C, ()] KT +2C; (d) [h + o (h)]

(32)

TINT
+ 8K, J Esup|X(u)-Y (w)|*ds,

0 0<u<s

TINT
EJ J |h (X (s),X(gs),r(s),u)
R

0

~h(Z\(s), Z,(s),7(s), u)|27T (du)ds
(33)
< 4K, [C, (d) + Cy (d)| hT +2C; (d) [h + © (h)]

THAT
+ 8K, J Esup |X (u) - Y (u)|’ds.

0 0<u<s

On the other hand, by the Burkholder-Davis-Gundy inequal-
ity, Young’s inequality, and Lemmas 5-7, we have for any
g >0

t
L X ()~ Y (s)]

x|g(X(s), X (gs),7(5)
- g(Z,(5),Z,(s),7(s))| AW (s)

S3E[ sup |X () -Y ()]

0<t<Ty AT

AT
([ eee, x@.r @)
0
1/2
9 (2, (0, 2,(0),F (t))|2dt) ]

1/2
53[5113 sup |X(t)—Y(f)|2]

0<t<T AT
1 Td/\T
x[—E(J lg (X (1), X (qt),r (1))
& 0

1/2

~9(Z, (1), 2, (1) ,7<t))|2dt)]

<6eE sup |X(t)-Y @)

0<t<TyAT

6 T AT
*‘EI lg(X (), X (qt),r(®)
&€ 0

1

~g(Z, (), Z, (1), 7 () dt
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<6g,E sup |X()-Y (@)

0<t<TyAT

v 7;—4Kd [Cy (d) +C, (d)] hT
1

+ 2e @) hto )]
&

48 T NT
+ —Ky J
&

Esup |X (u) - Y (u)|’ds.

0<u<s

(34)

We have for any &, > 0

E sup

0<t<TyAT

L J;w 21X (s) =Y (s)| |h (X (s), X (gs),7(s),u)
~h(Z,(5),Z,(5),7(s),u)|] N (ds,du)

IX(@®)-Y @)

sCE( D

tEDP,tS‘r/\T

x |h(X(),X (qt),r (1), p,)

1/2

~h(Z,(t),Z, (t) ,?(t),Pf)|2>

< CE sup

0<t<T AT

|X () -Y (®)|E

><< Y h(xX®.X(at).r®,p,)
t€D,, t<TyAT

1/2

~h(Z,(t),Z, (t),7(t) >Pt)|2>

12
sCE[sZ sup IX(t)—Y(f)|2]

0<t<TyAT

><E|:l > Ihx®.X(qt).r ), p)

& teD, t<TyAT

1/2
—h (Zl (t) > Zz (t) >F (t) > pt)lzl

<C&E sup |X()-Y @)

0<t<T AT

+§E< >

teD, t<T AT

|h(X(®),X(qt).r ), p)

- h(Z,(),2, (t),?(t),Pt)|2>

<CeE sup |X(t)-Y (@)

0<t<t AT

TNT
+9EJ j |h (X (), X (qt) 7 (1), u)
0 R"

&
“h(Z, (1), Z, (&), 7 (£), u)|" 7 (du) dt

<Cg&E sup |X()-Y @)

0<t<T AT

+ ‘i—ch [C, (d) +C, (d)] T + 2£_cc3 (d) [ + o (h)]
2 2

Esup|X(u)-Y (w)|*ds,

0 0<u<s

+ —K,

8C TINT

(35)

where C is some constant that may change from line to line.
Similar, we have

E sup Jo JRn |h (X (s),X (gs),r(s),u)

0<t<tyAT
“h(Z,(s), Z, (5),7 (), u)|" N (ds, du)

sCE< Y o |h(x®),X(qt).r®),p,)
teD,, t<TyNT

1/2

~h(Z,(t),Z, (t),7 (1) :Pt)|4>

|h (X (1), X (qt),r(t), p,)

sCE( D

SED,,s<TyNT

—h (Zl (t) ,Zz (t) >F(t) ’pt)|2>

T AT
sCEj j|h(X(t),x(qt),r(t),u)
0 R"
~h(Z, (1), Z, (£),7 (£),u)|’ 7 (du) dt

< 4CK, [C, (d) + C, (d)] hT +2CC; (d) [h + o (h)]

TINT
+8CKj, J Esup|X(u)-Y (u)lzds.
0

0<u<s

(36)



Substituting (31)-(36) into (30), we obtain that

E [ sup | X (t) —Y(t)f]

0<t<T AT

< (6, + Ce,) E [ sup |X(t)-Y (t)IZ]

0<t<TyAT

1+eg,

24
+ (10+ — +2C
& &

kil @+ Co @] Th

N (4+ E)Q (d) [+ o ()]
&

48 1+
+[1+(2o+—+4c sz)Kd]
& &

T
X J E sup |X(u)- Y (u)|*ds.

0 0<u<tAs

(37)
By choosing &, > 0, ¢, > 0 sufficiently small and letting 6¢; +
Ce, = 2/3, we have
E [ sup |X (¢) - Y(t>|2]

0<t<TAT

1+eg,

24
s3<10+—+2C

s . >1<d [C, (d) +C, (d)] Th

+3(4+ E)Q (d) [+ (h)] (38)
&

4 1+
+3[1+(20+—8+4C eZ)Kd]
& &

T

X J E sup |X(u)- Y (w)|*ds.
0 0<u<tAs

Therefore, we apply Gronwall’s inequality to get

E [ sup |X(t) - Y(t)|2]

0<t<tAT

< {3(10+§+2C1+€2>Kd [C,(d) +C, ()] Th
& &

+3<4+E>C3 (d) [h+ o(h)]}e3[1+(zo+(4s/sl)+4C((1+sz)/sz))1<d]_
&

(39)
This completes the proof. O

Remark 8. Under the local Lipschitz condition, Theorem 4
not only tells us the strong convergence of the approximate
solutions to the true solutions but also tells us the rate of the
convergence with order 1/2 by (39).

Remark 9. When r(t) = 0 or h = 0, (4) reduces to which
was studied by Fan et al. [14], Xiao and Zhang [15], and
Milosevi¢ and Jovanovi¢ [16]. Our results in the present paper
generalized and improved the results in [14-16].
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4. Convergence of Numerical
Solutions in Probability

In this section, by applying Theorem 4, we will show the con-
vergence in probability of the approximate solutions to the
true solutions under local Lipschitz condition. Before we
give the convergence theorem, we need some additional con-
ditions based on Lyapunov-type functions.

Assumption 10. For x € R" and i € S, there exist a positive
function V € C*(R" x S;R"), K > 0, and two constants A >
A, > 0 such that

lim V (x,i) = oo, (40)

x| = co
LV (x,9,i) < K[1 = AV (x,0) + A,V (p,0)].  (41)
Assumption 11. There exists a positive constant L ; such that,
forall x, y € R" and i € Swith |x| V |y| < d,
[V (6, 0) =V (3, 1) V [V, (6,1) = Ve (3]

(42)
N IVxx (X,i) - Vxx (y’l)| < Ld |x _y| .

Now, let us state our convergence theorem.

Theorem 12. Let the assumptions of Theorem 4 hold. Also

assume that there exists a C* functionV: R* xS — R, sat-

isfying (40)—-(42). Then the Euler approximate solutions con-

verges to the true solutions of (4) in the sense of the probability.
That is,

lim sup Y (t) - X (t)]* = 0,
h—=00<t<T

in probability. (43)
Proof. The proof is rather technical, and we divide it into
three steps.
Step 1. We assume the existence of the nonnegative Lyapunov
function V(x, 1) satisfying (40). Applying the Itd’s formula,
V(X(t),r(t)) yields

dv (X (6),r (1))

=LV (X (t),X (qt),r@))dt
+V, (X (1), 7 (1) g(X (), X (qt),r(t))dW (t)

+ Lﬂ [V(X(®) +h(X(®),X(qt),r(#),u),r )

~V (X (t),r ()] N (dt,du).
(44)

Integrating from 0 to t A 0, and taking expectations gives

EV(X(tn6y),r(tn0,))

8, (45)
=V (X, 1) +E L LV (X (s), X (gs),r(s))ds.
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By (41), we have

EV(X(tA0,).r(tAO,))

tAO,

SV(XO,r0)+KEJ [1-A1,V(X(s),7(s)

0
+1,V (X (gs),7 ()] ds (46)

<V (Xg.ry) + KT

tAO

+K (1, +/\2)J sup EV (X (u),r (u)) ds.

0  0<uss

Thus, for any ¢, € [0, T7], it follows that

sup EV (X (tAOy),r(tA0,))
o<t<t,

<V (Xgry) + KT

t

+()L1+)x2)KJl

0 0<t<s

SupEV (X (tN6,),r(tNOy))ds.

(47)
Using the Gronwall inequality, we obtain that
sup EV (x (tA6,),r(tA6y))
0<t<T (48)

< [V (Xgoro) + KT e HA2KT,

Let 7, = inf{V(x,i) : |x| > d}. By (40), we have
lim,_, 7 ; = 0o. Noting that |X(0,;)| = d,as 0; < T, we
derive from (48) that

[V (Xg, 7o) + KT] e H42KT

> sup EV (x (t A 6,),r(tAO,))
0<t<T

(49)
> E[V (X (6,),7(64)) Ig,er; ()]
>7,P(6,<T).

That is,
(A +A,)KT

74

Recall that 7; — ooasd — oo. For a given T, X, and
r(0), it follows that

[V (Xq» 7o) + KT] eM1HAKT

0, 51
7 — (51)

asd — oo. Let

V (X, 7o) + KT] et KT
gz[ (Xo o) - Je €(0,1). (52
d

Thus we have

P(0,<T)

IN
W m

. (53)

Step 2. We will give the estimate of P(p; < T). By (14),
applying the Ito’s formula to V(Y (¢), r(¢)) yields

dv (Y (t),r ()
=V, (Y(t),r (1) f(Z, (1), 2, (1), 7 (1))

+  trace (9" (Z,(1),Z,@),7 (1))

XV, YO, rt)g(Z, (), Z,(t),7 ()] dt

+V (Y (£),7 (1) g(Z, (t),Z, (1), 7 (1)) dW (t)
+ Ln VY& +h(Z,(t),Z,1),7(t),u),r (1)

“VY@®),r#) -V, (Y (©),r )

Xh(Z,(t),Z,(t),7(t),u)] I (du)dt
+ Ln (VYO +h(Z,(t),Z, 1), 7(t),u),r 1))

~V(Y (), ()] N (dt,du)

N
+ D ViV (Y (), ) dt.
j=1
(54)

By (7), we have
dv (Y (£),7 ()
=LV (Z,(t),Z,(t),7(t))dt
+[Ve (Y (1), r (1) =V, (Z, (0,7 ()]

X f(Z, (), 2, (1), 7 (1)) dt
+ %trace [gT (Z, (1), Z,(t),7 (1))

x [Vxx (Y (t) T (t)) - Vxx (Zl (t) )F(t))]

xg(Z, (t),Z,(t),7 (1)) dt

+ Ln (VY @ +h(Z, 0,2, 6),7 (1), u),7 (1))
-V(Z () +h(Z,(t),Z, (1), 7(£),u),7(1))]
[V @®,r®)-V(Z,®),70)]
= [Ve (Y (0,7 () =V, (2, (1),7(1))]
X h(Zy(t),Z,(t),7(t),u) } 1 (du)dt

+V, (Y (), 7 (1) g(Z, (), Z, (£),7 (1)) AW (t)
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[ W EOrEz0.2,0.50.0.00)

-V(Y (t),r ()] N (dt,du)

N N
+ Y YoV (Y (), ) dt = ys;,V (2, (1), ) dt.
j=1 j=1

(55)

Integrating from 0 to p; A t, taking expectations, and by (41),
we have

EV (Y (tApa).r(tAps))
<V (Xy.1y) + KT + A,KE J-pdm V(Y (s),r(s)ds
0
Pant
+A,KE J V(Y (gs),r(s))ds
0

pant

- M, KE L [V(Z,(5),7(5) + V(Y (s),7(s)] ds

+ I+ I+ I3+ I+ I,
(56)

where

pant
7, = A\,KE L IV (2, (5),7(5) =V (Y (q5),7 ()] ds,

pant
7, = E L V(Y (5),7(5)) Vi (2, (), 7 (9))]

X f(Z1(5),2,(5),7(s)) ds,

Palt
7= 3 [ W 0 ) -V (29,7 0)

x19(Z,(5), 2, (s),7(s))| ds,
pant
T, = EL JRn (VY (s)+h(Z,(s),2Z,(5),
7(s),u),r(s))
_V(Zl (s)
+h(Z,(s),2Z,(5),7(s),u),7(s))|
+ V(Y (5),r(s) =V (Z,(s),7 ()|
+H|V (Y (5),7(5) = Vi (Z,(5),7 ()|
< | (Z, (), 2, (5),7(s),u)|] 7 (du) ds,

pant N
I=E|
s=E| X

j=1

YooV (Y (5), )| ds

pant N
B[ sV (2190, ds.
=1

(57)

Abstract and Applied Analysis

By (42) and Young’s inequality, we have

pant
J1 < M,KE Jo [V(Z,(s),7(s) =V (Y (gs),7(s))|ds
Pat
+A,KE Jo [V (Y (gs),7(s) -V (Y (gs),r(s))|ds
pait
< A,KL4E JO |Z, (s) = Y (gs)|ds

T
+ \,KE L IV (Y (g5).7(5)) = V (Y (gs).7 ()| ds

Nt

< A,KLy, Lpd (E|Z2 (s)-Y (qs)|2)1/2ds +A,7.
(58)

Let N = [T/h], the integer part of T'/h, and let I; be the
indicator function of the set G. Then

N (n+1)h b
S = KZEJ [V (Vigaps 1) =V (YVigaps 7 9)] ds

n=0 nh

N (n+1)h (59)

+ | (Yigap ™ )| Ty £y s

By setting V| = sup,, g esV (%, 1) and using the Markov pro-
perty, we have

N (n+1)h
j < ZKVIZE j I{r(s)¢n}:}d$
n=0 Jnh

N (n+1)h L
2KV Y [ E[E[L ] 1] ds
n=0 “"
N (n+Dh
=2KV, ) J E|YIpyP(r(s) #ilrh=i)|ds
n=0 J1h ies "
= 2KV,
N ~(n+1)h
X Z J E Zl{rﬁ=i}z (yij (s—nh) +o(s— nh))
n=0 *nh i€S j#i
x ds
N (n+Dh
<2KV Y [ E|(max crneom) DI |

= 2KV, | max (-y) b+ o ()] T
(60)
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Inserting (60) into (58), we have, by Lemma 5,

Nt

P
J, < AKLy, J-Od (E|Z2 (s)-Y (qs)|2)1/2ds
+2A,KV, max (-y;)h+o(h) T

1<i<N

< L,KL4\/C, (d)Th1/2+2A2KV1T1ma§(—yﬁ) [h+o(h)].
N (61)

Similarly, by Assumptions 2, 3, and 11, Lemma 5, and Markov
property, we have

Pant
J,<E L [V (Y (s),7 () =V, (Z, (5),7(s))]
x| f(Z,(5),2Z,(s),7(s))| ds
pant
B[ V26 9) - Ve (2,9, 70)
< |f(Z,(5),2,(s),7(s))| ds
pant
< 2\[KdE| V(Y (9,7 () = Vi (2, 90 r 9)] ds
pa\t
o [, 26,0
-V (Z,(5),7(s))| ds

< 2+/K,dL,4E JW [Y (s) - Z, (s)| ds
0
T
20\ KB [ V(2,927 (6) - Ve (2,9, F 0] ds

< 2d\[K4La\[C, ()T
+ 4\/K\ddeTllgg>I§, (=yi) [+ ()],

(62)

where V, = sup),\p;esVy (%, 7). For the term .75 in (56), by
Assumptions 2, 3, and 11 and Lemma 5, we have

1 pant
j3 S EE J;) |Vxx (Y (S),?’(S)) _Vxx (Zl (S),T(S))|
%19 (Z, (), 2, (5),7(s))| ds

1

pant
2B (29 9) V2,97 0)
0

x|g (2, (5), 2, (s),7(s))[ ds

11
pant
< 2d2KdEJ Ve (Y (5),7(5)) — Vi (Z, ()7 ()| ds
0
Pant
+2d°K,4E J Ve (21 (5),7(5))
0

— Vi (Z,(5),7(5))| ds

2 Pat
< 2d°K, L, E L |Y (s) -2, (s)| ds

T
+2d°K4E J [Vix (Z1 (5),7(5))
0
Vo (Z,(5),7(s))| ds
< 2d*K,L \[C, (d)Th'"
+ 4d2KdV3Tpa§ (=y:) [h+ (W),
(63)

where V3 = sup|, . icsVyx(x, ). For the term .7, in (56), by
Assumptions 2, 3, and 11 and Lemma 5, we have

pant
S, < EJ

0

[ Ve

+h (Zl (S) ,Zz (5) )F(S) ,M) T (S))
=V (Z,(s)+h(Z,(s),Z, (s),7 (s) ,u)s
r(s))| 7t (du) ds

pant
+E JO JR»« [V (Z,(s)
+h(Z,(5),2,(5),7(s),u),7(s))
-V(Z:(s)
+h(Z,(5),2,(5),7(5),u),7(9))]
x 71 (du) ds

pant
+EJ J [V (Y (s),r(s) =V (Z,(s),7(5))|
o Jre
x 71 (du) ds
pant
e[ W # @) -V (2 6.76)
o Jr
x 71 (du) ds
pa\t
+ EJ I Ve (Y (5),7(5)) = Vo (Z, (5), 7 (5))|
o Jr
x|h(Z,(s),Z,(s),7(s),u)| m (du)ds

Pat
] R R ACAC RIS BACACRIS)
0 R

x|h(Z,(s),2Z,(s),7 (s),u)| 7w (du)ds
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pant
<2L,E L JRn 1Y (5) — Z, ()| 7 (du) ds

+ 2d\/Kd J 7t (du)
R
pant
x E L [V (Y (s),7 () =V, (Z, (5),7(s))| ds

+ JRn 7 (du) E

pant
X L V(Z,(s),r(s) =V (Z,(s),7(s))|ds

+ Zd\/Kd J 7 (du)
R

pant
<[ 200 0) V2 9.7 )] ds
pant
+E L JR” |V (Zl (s)
+h(Z,(s),Z,(s),7(s),u),r(s))
-V (Z1 (s)

+h(Z,(s),Z, (5),7(s),u),7(s))|
x 71 (du) ds

<2 “ 7 (du) + zd\/Kd J n(du)]
R" R"

x \/C, (d)L ; Th"*

+2 [J 7 (du) V, + Zd\/KdJ 7 (du)V,
R R

x Tllgi% (-yi) [h+o (W] + Z,
(64)

where

pant
v
0

| V(@0 +h(2,9.2,6.7 0.1 9)
~V(Z,(5),7 ()| 7 (du) ds
B[V 0.ro)
“V(Z,(5),7(5))| 7 (du) ds
[ vz 0.5)

~V(Z, () +h(Z,(5),2Z,(5),7(s),u),
7(s))| 7 (du) ds

Abstract and Applied Analysis

< 4de\jKd j 7 (du)T
Rn

+2V,T L" 7 (du) max (=yi) [h+ 0 ().
(65)

Inserting (65) into (64), we have
F<2 “ 7 (du) + Zd\/Kd j - (du)] C, ()L, Th?
R R

+ 4de \]Kd j T (du)T
Rn

+4“ n(du)V1+d\jKdJ 7 (du)V,
R" R"

X Tlmsigl (=¥i) (h+ o (M)].
(66)

For the term %5, by Assumptionll, equation (56), and
Lemma 5, we have

Pd/\fi
S5 < EJ
0o o

Yr(s)j |V (Y (5)’]) _V(Zl (S)’])lds

pant N
+E L Z |Vr(5)j - W(S)j' |V (Zl (s) ’J)l ds
j=1

< Nmax (~3) Lg\[Cy ()T + 2V,NT max (~y;).
(67)

Combing these inequalities and (53), we derive that, for t; €
[0, T],

sup EV (Y (t A pg) 7 (t A py))

0<t<t

<V (Xp,1p)

+ [K + 4de\/Kd J 7 (du) + 2V, N max (~y;) | T
R" <i<
+(A, +14,)K

t
xj sup EV (Y (£ A py)) ds+M,h"*+ M, [h+ o (h)],

0 0<t<s

(68)
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where

M, = L\C, ()T

2d+\/K, +2d°K, +ZJ m(d
d d - (du)
+4d\jKd J 7 (du) + N max (—y,-,»):|
R" 1<i<N
+ A,KL 44/C, (d)T,

M, = I: <2A2K +4 Ln v (du)) \4

+<4d Kd+4d\jKdJ ﬂ(du)>V2
o

+4d°K,V, | Tmax (-y;).

1<isN

(69)
For arbitrary 0 < ¢, < T, by the Gronwall inequality, we get

sup EV (Y (t A pg) .7 (EA pa))

0<t<T

< {V (Xos10)
+ [K + 4de\/Kd J 7 (du) + 2V, N max (_Yii):| T
R" <i<

+M;h'? + M, [h+ o (h)] } e HAIKT,
(70)

Noting that [Y(p,)| = d, as p; < T, we derive from (70) that

{V (Xp>79)

+ [K + 4de\/Kd J 7 (du) + 2V1N1ma§](—)’ii)] T
R" <i<

71
+M '+ My [h+ o (W)] } Mt AIKT 7y

= EV (Y (¢ A pa)o7 (EA pa))
> E[V (Y (pa) 7 (pa)) Iipyery W)]

> %dP(Pd < T)

13

So we have

P(ps <T)

3 {V (Xoo1o) + [K +4dL, \/W] T} oA +A)KT

< 7,

+ {[2Vi N max, oy (y;)] T} M KT
74

{M R+ M, [h+ o ()]} M 2DKT

+
Wd

(72)

Step 3. Let €, 6 € (0,1) be arbitrarily small. By setting

§={w: sup |Y(t)—X(t)|226} (73)

0<t<T
and using Theorem 4, we have

Cylh+o(h)]

>E [ sup [Y (t) - X (t)|211dzT (w)]
0<t<T

>E [ sup [Y (1) - X (t)lzIrdZT (w) I (w)] 74)

0<t<T
2 0F [I, o7 (W) Ig )] = 8P ({r, 2 T} n Q)

>8[P(Q)-P(r,<T)].
Combing (53) and (72) together, one gets

P(r;<T)
<P(p;<T)+P(6,<T)

<

W m

{V (XO) 7’0) + [K +4dL, \/W] T} eM+A)KT

74

+

N {[2V,N max, ;o (-y;;)] T} e 42KT
74

{M R + My [h+ o ()]} e HA2KT
74 ‘

+

(75)
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Hence on using (74), we conclude that
P(Q)
- p( sup [Y (t) - X (1)]* = 5)
0<t<T

{V (Xoo19) + [K + 4de\/W] T} oA +AIKT
7,

{[2ViN max, o ()] T} e 42T
74

+

{M1'? 4 M, [h+ o ()]} e AKT
%d

+

+%[h+o(h)]+

W m

(76)

Recalling that 7y — oo asd — 00, we can choose d
sufficiently large for

{V (X0> 7’0) + [K + 4de\/W] T} e(/\1+/\2)KT

74
+ {[2ViNmax, iy (-7:)] T} e AT <€
7, 3
77)
and then choose h sufficiently small for
MR + My [h+ o ()]} eMHAKT
M, = } + S oy < £
7 4 ) 3
(78)
to obtain
P( sup Y (t) - X (1) = 6) <e. (79)
0<t<T
The proof of Theorem 12 is now complete. O
5. An Example

In this section, we construct one example to demonstrate the
effectiveness of this theory. Let r(f) be a right-continuous
Markov chain taking values in S = {1, 2} with the generator

r=(y),, - [‘22 _22] (80)

Let N(dt,du) be a compensated Poisson random measures
and is given by m(du)dt = Af (u)du dt, where A = 2 and

L w2
(Li) = € >
f \V2mu

0<u<oo (81)

Abstract and Applied Analysis

is the density function of a lognormal random variable. Of
course N(dt,du) and r(t) are assumed to be independent.
Consider a linear stochastic pantograph delay equations with
Markovian switching and pure jumps

dX (t) = a(r (t) X (t) dt

_ (82)
+j| b (0) X (050 N e, du).
ul<1

Here a(1) = -3, a(2) = -1, b(1) = 1/+/10, and b(2) = 1/+/6.

Then (82) can be regarded as the result of the two equations

1 —
4X () = -IX (O de + Lum X (0.5) N (dt, du) |

1 —
ax ()= X (dt + - Lum X (0.56) N (dt, du) ,( |
83

switching among each other according to the movement of
the Markov chain r(t). Obviously, (82) satisfies Assumptions
2 and 3. Given the stepsize h, we can have the Euler method

Y,

el = Yn+a(rZ) Y,h
tn+l —_ (84)
+ J J. ub (r:) Y05, N (dt, du),
t, lul<1
with Yy = X(0). Let Z,(t) = Y,, Z,(t) = Yo, and 7(t) =
ri', fort € [t, t,,;)- Then we define the continuous Euler
approximate solution
t —_—
Y(#)=Y(0)+ J a(r(s))Z,(s)ds

0
(85)

t
+ J J ub (7 (s)) Z, (s) N (ds, du) .
0 Jul<1

Since the conditions of Theorem 4 are satisfied, then the
approximate solution (85) will converge to the true solution of
(82) in the sense of the L>-norm. To examine the convergence
in the sense of the probability, we construct a function

B, X, ifi=1,

86
B,x*, ifi=2. (86)

V(x,i)={

Then
LV (x, y,i)

(zﬁz—S/sl)xM%J W (du) Byt ifi= 1,

lul<1

5 1
(2B, —4B,) x* + 6 J

W (du) Byy®,  ifi=2.
lul<1

(87)

From the properties of the lognormal distribution, we have

Wy s=(s-22)pe+ 3880 69)
1

LV (x, ¥, 2) < - <4 - 2ﬂ_ﬁ1> B P %ezﬁz}/z' (89)
2
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If6/(12 — €*) < (B,/B)) < 4 — (1/10)e%, then it follows
that Assumptions 10 and 11 are satisfied. Consequently, the
approximate solution (85) will converge to the true solution
of (82) for any ¢ € [0, T] in the sense of Theorem 12.
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