17 research outputs found

    Histamine regulates actin cytoskeleton in human toll-like receptor 4-activated monocyte-derived dendritic cells tuning CD4+ T lymphocyte response

    Get PDF
    Histamine, a major mediator in allergic diseases, differentially regulates the polarizing ability of dendritic cells after Toll-like receptor (TLR) stimulation, by not completely explained mechanisms. In this study we investigated the effects of histamine on innate immune reaction during the response of human monocyte-derived DCs (mDCs) to different TLR stimuli: LPS, specific for TLR4, and Pam3Cys, specific for heterodimer molecule TLR1/TLR2. We investigated actin remodeling induced by histamine together with mDCs phenotype, cytokine production, and the stimulatory and polarizing ability of Th0. By confocal microscopy and RT-PCR expression of Rac1/CdC42 Rho GTPases, responsible for actin remodeling, we show that histamine selectively modifies actin cytoskeleton organization induced by TLR4, but not TLR2 and this correlates with increased IL4 production and decreased IFNγ by primed T cells. We also demonstrate that histamine-induced cytoskeleton organization is at least in part mediated by down-regulation of small Rho GTPase CdC42 and the protein target PAK1, but not by down-regulation of Rac1. The presence and relative expression of histamine receptors HR1–4 and TLRs were determined as well. Independently of actin remodeling, histamine down-regulates IL12p70 and CXCL10 production in mDCs after TLR2 and TLR4 stimulation. We also observed a trend of IL10 up-regulation that, despite previous reports, did not reach statistical significance

    CD30-CD30 ligand interaction in primary cutaneous CD30+ T-cell lymphomas: a clue to pathophysiology of clinical regression.

    Get PDF

    Carbon Nanotube Scaffolds Instruct Human Dendritic Cells: Modulating Immune Responses by Contacts at the Nanoscale

    No full text
    Nanomaterials interact with cells and modify their function and biology. Manufacturing this ability can provide tissue-engineering scaffolds with nanostructures able to influence tissue growth and performance. Carbon nanotube compatibility with biomolecules motivated ongoing interest in the development of biosensors and devices including such materials. More recently, carbon nanotubes have been applied in several areas of nerve tissue engineering to study cell behavior or to instruct the growth and organization of neural networks. To gather further knowledge on the true potential of future constructs, in particular to assess their immune-modulatory action, we evaluate carbon nanotubes interactions with human dendritic cells (DCs). DCs are professional antigen-presenting cells and their behavior can predict immune responses triggered by adhesion-dependent signaling. Here, we incorporate DC cultures to carbon nanotubes and we show by phenotype, microscopy, and transcriptional analysis that in vitro differentiated and activated DCs show when interfaced to carbon nanotubes a lower immunogenic profile

    Carbon Nanotube Scaffolds Instruct Human Dendritic Cells: Modulating Immune Responses by Contacts at the Nanoscale

    No full text
    Nanomaterials interact with cells and modify their function and biology. Manufacturing this ability can provide tissue-engineering scaffolds with nanostructures able to influence tissue growth and performance. Carbon nanotube compatibility with biomolecules motivated ongoing interest in the development of biosensors and devices including such materials. More recently, carbon nanotubes have been applied in several areas of nerve tissue engineering to study cell behavior or to instruct the growth and organization of neural networks. To gather further knowledge on the true potential of future constructs, in particular to assess their immune-modulatory action, we evaluate carbon nanotubes interactions with human dendritic cells (DCs). DCs are professional antigen-presenting cells and their behavior can predict immune responses triggered by adhesion-dependent signaling. Here, we incorporate DC cultures to carbon nanotubes and we show by phenotype, microscopy, and transcriptional analysis that in vitro differentiated and activated DCs show when interfaced to carbon nanotubes a lower immunogenic profile
    corecore