49 research outputs found

    Microencapsulation Technology: A Powerful Tool for Integrating Expansion and Cryopreservation of Human Embryonic Stem Cells

    Get PDF
    The successful implementation of human embryonic stem cells (hESCs)-based technologies requires the production of relevant numbers of well-characterized cells and their efficient long-term storage. In this study, cells were microencapsulated in alginate to develop an integrated bioprocess for expansion and cryopreservation of pluripotent hESCs. Different three-dimensional (3D) culture strategies were evaluated and compared, specifically, microencapsulation of hESCs as: i) single cells, ii) aggregates and iii) immobilized on microcarriers. In order to establish a scalable bioprocess, hESC-microcapsules were cultured in stirred tank bioreactors

    Exploring analytical proteomics platforms toward the definition of human cardiac stem cells receptome

    Get PDF
    Human cardiac stem cells (hCSC) express a portfolio of plasma membrane receptors that are involved in the regulatory auto/paracrine feedback loop mechanism of activation of these cells, and consequently contribute to myocardial regeneration. In order to attain a comprehensive description of hCSC receptome and overcoming the inability demonstrated by other technologies applied in receptor identification, mainly due to the transmembrane nature, high hydrophobic character and relative low concentration of these proteins, we have exploited and improved a proteomics workflow. This approach was based on the enrichment of hCSC plasma membrane fraction and addition of prefractionation steps prior to MS analysis. More than 100 plasma membrane receptors were identified. The data reported herein constitute a valuable source of information to further understand cardiac stem cells activation mechanisms and the subsequent cardiac repair process. All MS data have been deposited in the ProteomeXchange with identifier PXD001117 (http://proteomecentral.proteomexchange.org/dataset/PXD001117).Authors acknowledge FP7 EU project CARE-MI (HEALTH-2009_242038) and the Portuguese Foundation for Science and Technology (PTDC/BBBBIO/1414) for financial support. PGA is a recipient of the FCT fellowship SFRH/BPD/86513/2012. MALDI-TOF/TOF analyses were performed at the Mass Spectrometry Unit (UniMS), ITQB/iBET, Oeiras, Portugal. The data deposition to the ProteomeXchange Consortium was supported by PRIDETeam, EBI.S

    Combining Hypoxia and Bioreactor Hydrodynamics Boosts Induced Pluripotent Stem Cell Differentiation Towards Cardiomyocytes

    Get PDF
    Cardiomyocytes (CMs) derived from induced pluripotent stem cells (iPSCs) hold great promise for patient-specific disease modeling, drug screening and cell therapy. However, existing protocols for CM differentiation of iPSCs besides being highly dependent on the application of expensive growth factors show low reproducibility and scalability. The aim of this work was to develop a robust and scalable strategy for mass production of iPSC-derived CMs by designing a bioreactor protocol that ensures a hypoxic and mechanical environment. Murine iPSCs were cultivated as aggregates in either stirred tank or WAVE bioreactors. The effect of dissolved oxygen and mechanical forces, promoted by different hydrodynamic environments, on CM differentiation was evaluated. Combining a hypoxia culture (4 % O(2) tension) with an intermittent agitation profile in stirred tank bioreactors resulted in an improvement of about 1000-fold in CM yields when compared to normoxic (20 % O(2) tension) and continuously agitated cultures. Additionally, we showed for the first time that wave-induced agitation enables the differentiation of iPSCs towards CMs at faster kinetics and with higher yields (60 CMs/input iPSC). In an 11-day differentiation protocol, clinically relevant numbers of CMs (2.3 × 10(9) CMs/1 L) were produced, and CMs exhibited typical cardiac sarcomeric structures, calcium transients, electrophysiological profiles and drug responsiveness. This work describes significant advances towards scalable cardiomyocyte differentiation of murine iPSC, paving the way for the implementation of this strategy for mass production of their human counterparts and their use for cardiac repair and cardiovascular research. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s12015-014-9533-0) contains supplementary material, which is available to authorized users

    Bioprocess integration for human mesenchymal stem cells: from up to downstream processing scale-up to cell proteome characterization

    Get PDF
    Human mesenchymal stem cells (hMSC) are relevant cell-based products for autologous and allogeneic therapies. To deliver the required cell numbers and doses to therapy, scaling up production and purification processes (at least to the liter-scale) while ensuring high purity, viability and maintaining cells’ critical quality attributes (CQA) and functionality is essential [1]. Therefore, the aim of this work was to prove scalability of an integrated streamlined bioprocess compatible with current good manufacturing practices (cGMP) comprised by cell expansion, harvesting and volume reduction unit operations using human mesenchymal stem cells (hMSC) isolated from bone marrow (BM-MSC) and adipose tissues (AT-MSC). BM-MSC and AT-MSC expansion and harvesting steps were scaled-up from spinner flasks to 2 L scale stirred tank single-use bioreactor using synthetic microcarriers and xeno-free medium, ensuring high cellular volumetric productivities (50 x 106 cell.L-1.day-1), expansion factors (14 - 16 fold) and cell recovery yields (80%). For the concentration step, flat sheet cassettes (FSC) and hollow fiber cartridges (HF) were compared showing a fairly linear scale-up, with a need to slightly decrease the permeate flux (30 - 50 LMH, respectively) to maximize cell recovery yield. Nonetheless, FSC allowed to recover 18% more cells after a volume reduction factor of 50. Overall, at the end of the entire bioprocess more than 65% of viable (\u3e 95%) hMSC could be recovered without compromising cell’s CQA of viability, identity and differentiation potential. “Omic” tools in combination with standard analytical assays allow for a better cell characterization, increasing product and process understanding [2] and are thus fundamental for process development. Thus, alongside the standard quality assays for evaluating hMSC’s CQA, a proteomics workflow based on mass spectrometry tools was established to characterize the impact of processing on hMSC’ CQA. Overall, through sensitivity, robustness and throughput, this type of workflow provided the identification of specific signatures of the final product. Therefore, it proves to be essential to understand the cells’ final quality as well as to evaluate the impact of manufacturing at different stages of processing. References: [1] Pattasseril J et al, BioProcess Int. 2013, 3, 38–46. [2] Campbell A et al, Stem Cells Transl. Med. 2015, 4, 1155–1163. The authors acknowledge UniMS – Mass Spectrometry Unit team (ITQB-NOVA/iBET, Oeiras, Portugal), iNOVA4Health Research Unit (LISBOA-01-0145-FEDER-007344), and Fundação para a Ciência e Tecnologia (FCT, Portugal) for funding the project CARDIOSTEM (MITP-TB/ECE/0013/2013), and the grants SFRH/BD/51940/2012 (MIT-Portugal), SFRH/BD/52302/2013, SFRH/BD/52481/2014, SFRH/BPD/86513/201

    Engineering scalable manufacturing of high-quality human MSC for cell therapy: From up to downstream processing integration to cell proteome characterization

    Get PDF
    Human mesenchymal stem cells (hMSC) are relevant cell therapy products for autologous and allogeneic therapies. To deliver the required cell numbers and doses to therapy, scaling up production and purification processes (at least to the liter-scale) while ensuring high purity, viability and maintaining cells’ critical quality attributes (CQA) and functionality is essential. Therefore, the aim of this work was to prove scalability of an integrated streamlined bioprocess compatible with current good manufacturing practices (cGMP) comprised by cell expansion, harvesting, volume reduction and washing unit operations using human mesenchymal stem cells (hMSC) isolated from bone marrow (BM-MSC) and adipose tissues (AT-MSC). Single-use technologies were adopted at different steps of the manufacturing workflow to support process integration and scale-up. BM-MSC and AT-MSC expansion and harvesting steps were scaled-up from spinner flasks to 2 L single-use stirred tank bioreactor using synthetic microcarriers and xeno-free medium, ensuring high cellular volumetric productivities (50 x 106 cell.L-1.day-1), expansion factors (14 - 16 fold) and cell recovery yields (\u3e80%). For the volume reduction and washing steps, flat sheet cassettes (FSC) and hollow fiber cartridges (HF) were compared showing a fairly linear scale-up, with a need to slightly decrease the permeate flux (30 - 50 LMH, respectively) to maximize cell recovery yield. Nonetheless, FSC performed better allowing recovering 18% more cells after a volume reduction factor of 50 without compromising cell’s CQA of viability, identity and differentiation potential. “Omic” tools in combination with standard analytical assays allow for a better cell characterization, increasing product and process understanding and are thus fundamental for process development. Thus, alongside the standard quality assays for evaluating hMSC’s CQA, a proteomics workflow based on mass spectrometry tools was established to characterize the impact of processing on hMSC’ CQA. Overall, through sensitivity, robustness and throughput, this type of workflow provided the identification of specific signatures of the final product. Therefore, it proves to be essential to understand the cells’ final quality as well as to evaluate the impact of manufacturing at different stages of processing. The authors acknowledge UniMS – Mass Spectrometry Unit team (ITQB-NOVA/iBET, Oeiras, Portugal), iNOVA4Health Research Unit (LISBOA-01-0145-FEDER-007344), and Fundação para a Ciência e Tecnologia (FCT, Portugal) for funding the project CARDIOSTEM (MITP-TB/ECE/0013/2013), and the grants SFRH/BD/51940/2012 (MIT-Portugal), SFRH/BD/52302/2013, SFRH/BD/52481/2014, SFRH/BPD/86513/2012

    Vaccine-induced neutralizing antibody responses to seasonal influenza virus H1N1 strains are not enhanced during subsequent pandemic H1N1 infection

    Get PDF
    The first exposure to influenza is presumed to shape the B-cell antibody repertoire, leading to preferential enhancement of the initially formed responses during subsequent exposure to viral variants. Here, we investigated whether this principle remains applicable when there are large genetic and antigenic differences between primary and secondary influenza virus antigens. Because humans usually have a complex history of influenza virus exposure, we conducted this investigation in influenza-naive cynomolgus macaques. Two groups of six macaques were immunized four times with influenza virus-like particles (VLPs) displaying either one (monovalent) or five (pentavalent) different hemagglutinin (HA) antigens derived from seasonal H1N1 (H1N1) strains. Four weeks after the final immunization, animals were challenged with pandemic H1N1 (H1N1pdm09). Although immunization resulted in robust virus-neutralizing responses to all VLP-based vaccine strains, there were no cross-neutralization responses to H1N1pdm09, and all animals became infected. No reductions in viral load in the nose or throat were detected in either vaccine group. After infection, strong virus-neutralizing responses to H1N1pdm09 were induced. However, there were no increases in virus-neutralizing titers against four of the five H1N1 vaccine strains; and only a mild increase was observed in virus-neutralizing titer against the influenza A/Texas/36/91 vaccine strain. After H1N1pdm09 infection, both vaccine groups showed higher virus-neutralizing titers against two H1N1 strains of intermediate antigenic distance between the H1N1 vaccine strains and H1N1pdm09, compared with the naive control group. Furthermore, both vaccine groups had higher HA-stem antibodies early after infection than the control group. In conclusion, immunization with VLPs displaying HA from antigenically distinct H1N1 variants increased the breadth of the immune response during subsequent H1N1pdm09 challenge, although this phenomenon was limited to intermediate antigenic variants

    On the Effect of Thermodynamic Equilibrium on the Assembly Efficiency of Complex Multi-Layered Virus-Like Particles (VLP): the Case of Rotavirus VLP

    Get PDF
    Previous studies have reported the production of malformed virus-like-particles (VLP) in recombinant host systems. Here we computationally investigate the case of a large triple-layered rotavirus VLP (RLP). In vitro assembly, disassembly and reassembly data provides strong evidence of microscopic reversibility of RLP assembly. Light scattering experimental data also evidences a slow and reversible assembly untypical of kinetic traps, thus further strengthening the fidelity of a thermodynamically controlled assembly. In silico analysis further reveals that under favourable conditions particles distribution is dominated by structural subunits and completely built icosahedra, while other intermediates are present only at residual concentrations. Except for harshly unfavourable conditions, assembly yield is maximised when proteins are provided in the same VLP protein mass composition. The assembly yield decreases abruptly due to thermodynamic equilibrium when the VLP protein mass composition is not obeyed. The latter effect is more pronounced the higher the Gibbs free energy of subunit association is and the more complex the particle is. Overall this study shows that the correct formation of complex multi-layered VLPs is restricted to a narrow range of association energies and protein concentrations, thus the choice of the host system is critical for successful assembly. Likewise, the dynamic control of intracellular protein expression rates becomes very important to minimize wasted proteins

    Modeling retrovirus production for gene therapy. 2. Integrated optimization of bioreaction and downstream processing

    No full text
    In this work a model envisaging the integrated optimization of bioreaction and downstream processing is presented. This model extends the work presented in part 1 of this pair of papers by adding ultrafiltration to process optimization. The new operational parameters include ultrafiltration time, pressure, and stirring rate. For global optimization, the model uses as constraints the final product titer and quality to be achieved after downstream processing. This extended model was validated with the same system used in part 1, i.e., PA317 cells producing a recombinant retrovirus containing the LacZ gene as a marker in stirred tanks using porous supports. Optimization of the extended model led to the conclusion that bioreaction should have two steps, batch and perfusion, similar to what was found in part 1. Ultrafiltration in a stirred cell should be performed at low pressures and stirring rates to reduce the losses of infective retroviruses. Sensitivity analysis performed on the results of the integrated optimization showed that under optimal conditions the productivity is less sensitive to the parameters related to ultrafiltration than to those associated with bioreaction. These results were interpreted as reflecting the high yield of ultrafiltration (90%). The relevance of the model extension to perform integrated optimization was also demonstrated since a restriction in the specific ultrafiltration area in downstream processing conditioned perfusion duration and perfusion rate in bioreaction. This clearly indicates that overall process optimization cannot be achieved without integrated optimization
    corecore