72 research outputs found

    New academic journals: an international overview of indexing and access models

    Full text link
    Introduction. An international analysis of academic journals newly created in the period from 2011 to 2020 according to type of publisher, place of publication, their relationship with open access, and their indexing in databases. Studies of the issues of concentration of journal publisher ownership, uses of metrics, and access to titles reveal a changing landscape that is nevertheless still dominated by large commercial oligopolies. One notable trend is the creation of new titles in various configurations

    Conserved developmental expression of Fezf in chordates and Drosophila and the origin of the Zona Limitans Intrathalamica (ZLI) brain organizer

    Get PDF
    Background: The zona limitans intrathalamica (ZLI) and the isthmus organizer (IsO) are two major secondary organizers of vertebrate brain development. These organizers are located at the interface of the expression domains of key patterning genes (Fezf-Irx and Otx-Gbx, respectively). To gain insights into the evolutionary origin of the ZLI, we studied Fezf in bilaterians. Results: In this paper, we identified a conserved sequence motif (Fezf box) in all bilaterians. We report the expression pattern of Fezf in amphioxus and Drosophila and compare it with those of Gbx, Otx and Irx. We found that the relative expression patterns of these genes in vertebrates are fully conserved in amphioxus and flies, indicating that the genetic subdivisions defining the location of both secondary organizers in early vertebrate brain development were probably present in the last common ancestor of extant bilaterians. However, in contrast to vertebrates, we found that Irx-defective flies do not show an affected Fezf expression pattern. Conclusions: The absence of expression of the corresponding morphogens from cells at these conserved genetic boundaries in invertebrates suggests that the organizing properties might have evolved specifically in the vertebrate lineage by the recruitment of key morphogens to these conserved genetic locations

    Precise ionospheric electron content monitoring from single-frequency GPS receivers

    Get PDF
    The number of existing global positioning system (GPS) single-frequency receivers continues growing. More than 90% of GPS receivers are implemented as low-cost single-frequency chipsets embedded in smartphones. This provides new opportunities, in particular for ionospheric sounding. In this context, we present the new sidereal days ionospheric graphic (SIg) combination of single-frequency GNSS measurements. SIg is able to monitor, for each given GNSS transmitter-receiver pair, the vertical total electron content (VTEC) relative to the previous observation with the same or almost the same line-of-sight (LOS) vector. In such arrangements the SIg multipath error mostly cancels, thus increasing the accuracy of the ΔVTEC significantly. This happens for the GPS constellation after one sidereal day (about 23 h 56 m) and for Galileo after 10 sidereal days approximately. Moreover, we show that the required calibration of the corresponding carrier phase ambiguity can be accurately performed by means of VTEC global ionospheric maps (GIMs). The results appear almost as accurate as those based on the dual-frequency technique, i.e., about 1 TECU or better, and with much more precision and resolution than the GIM values in the ionospheric region sounded by each given single-frequency receiver. The performance is demonstrated using actual data from 9 permanent GPS receivers during a total solar eclipse on August 21, 2017 over North America, where the corresponding ionospheric footprint is clearly detected in agreement with the total solar eclipse predictions. The advantages of extending SIg to lower carrier frequencies and the feasibility of applying it to other global navigation satellite system (GNSS) systems are also studied. This is shown in terms of a fully consistent VTEC depletion signature of the same eclipse phenomena, obtained with Galileo-only data in North America at mid and low latitude. Finally the SIg feasibility, including the cycle slip detection, is shown as well with actual mass-market single frequency GPS receivers at mid and high latitude

    Gene expansion and retention leads to a diverse tyrosine kinase superfamily in amphioxus

    Get PDF
    Tyrosine kinase (TK) proteins play a central role in cellular behavior and development of animals. The expansion of this superfamily is regarded as a key event in the evolution of the complex signaling pathways and gene networks of metazoans and is a prominent example of how shuffling of protein modules may generate molecular novelties. Using the intron/exon structure within the TK domain (TK intron code) as a complementary tool for the assignment of orthology and paralogy, we identified and studied the 118 TK proteins of the amphioxus Branchiostoma floridae genome to elucidate TK gene family evolution in metazoans and chordates in particular. Unlike all characterized metazoans to date, amphioxus has members of all known widespread TK families, with not a single loss. Putting amphioxus TKs in an evolutionary context, including new data from the cnidarian Nematostella vectensis, the echinoderm Strongylocentrotus purpuratus, and the ascidian Ciona intestinalis, we suggest new evolutionary histories for different TK families and draw a new global picture of gene loss/gain in the different phyla. Surprisingly, our survey also detected an unprecedented expansion of a group of closely related TK families, including TIE, FGFR, PDGFR, and RET, due most probably to massive gene duplication and exon shuffling. Based on their highly similar intron/exon structure at the TK domain, we suggest that this group of TK families constitute a superfamily of TK proteins, which we termed EXpanding TK, after their seemingly unique propensity to gene duplication and exon shuffling, not only in amphioxus but also across all metazoan groups. Due to this extreme tendency to both retention and expansion of TK genes, amphioxus harbors the richest and most diverse TK repertoire among all metazoans studied so far, retaining most of the gene complement of its ancestors, but having evolved its own repertoire of genetic novelties.Ministerio de Educación y Ciencia, proyecto con referencia BFU2005-00252

    Thin healthy women have a similar low bone mass to women with anorexia nervosa.

    Get PDF
    An association between anorexia nerviosa (AN) and low bone mass has been demonstrated. Bone loss associated with AN involves hormonal and nutritional impairments, though their exact contribution is not clearly established. We compared bone mass in AN patients with women of similar weight with no criteria for AN, and a third group of healthy, normal-weight, age-matched women. The study included forty-eight patients with AN, twenty-two healthy eumenorrhoeic women with low weight (LW group; BMI 18.5 kg/m2 (control group), all of similar age. We measured lean body mass, percentage fat mass, total bone mineral content (BMC) and bone mineral density in lumbar spine (BMD LS) and in total (tBMD). We measured anthropometric parameters, leptin and growth hormone. The control group had greater tBMD and BMD LS than the other groups, with no differences between the AN and LW groups. No differences were found in tBMD, BMD LS and total BMC between the restrictive (n 25) and binge-purge type (n 23) in AN patients. In AN, minimum weight (P = 0.002) and percentage fat mass (P = 0.02) explained BMD LS variation (r2 0.48) and minimum weight (r2 0.42; P = 0.002) for tBMD in stepwise regression analyses. In the LW group, BMI explained BMD LS (r2 0.72; P = 0.01) and tBMD (r2 0.57; P = 0.04). We concluded that patients with AN had similar BMD to healthy thin women. Anthropometric parameters could contribute more significantly than oestrogen deficiency in the achievement of peak bone mass in AN patients

    A novel long non-coding RNA from NBL2 pericentromeric macrosatellite forms a perinucleolar aggregate structure in colon cancer

    Get PDF
    Primate-specific NBL2 macrosatellite is hypomethylated in several types of tumors, yet the consequences of this DNA hypomethylation remain unknown. We show that NBL2 conserved repeats are close to the centromeres of most acrocentric chromosomes. NBL2 associates with the perinucleolar region and undergoes severe demethylation in a subset of colorectal cancer (CRC). Upon DNA hypomethylation and histone acetylation, NBL2 repeats are transcribed in tumor cell lines and primary CRCs. NBL2 monomers exhibit promoter activity, and are contained within novel, non-polyA antisense lncRNAs, which we designated TNBL (Tumor-associated NBL2 transcript). TNBL is stable throughout the mitotic cycle, and in interphase nuclei preferentially forms a perinucleolar aggregate in the proximity of a subset of NBL2 loci. TNBL aggregates interact with the SAM68 perinucleolar body in a mirror-image cancer specific perinucleolar structure. TNBL binds with high affinity to several proteins involved in nuclear functions and RNA metabolism, such as CELF1 and NPM1. Our data unveil novel DNA and RNA structural features of a non-coding macrosatellite frequently altered in cancer

    Helicase Lymphoid-specific enzyme contributes to the maintenance of methylation of SST1 pericentromeric repeats that are frequently demethylated in colon cancer and associated with genomic damage

    Get PDF
    DNA hypomethylation at repetitive elements accounts for the genome-wide DNA hypomethylation common in cancer, including colorectal cancer (CRC). We identified a pericentromeric repeat element called SST1 frequently hypomethylated (>5% demethylation compared with matched normal tissue) in several cancers, including 28 of 128 (22%) CRCs. SST1 somatic demethylation associated with genome damage, especially in tumors with wild-type TP53. Seven percent of the 128 CRCs exhibited a higher ("severe") level of demethylation (≥10%) that co-occurred with TP53 mutations. SST1 demethylation correlated with distinct histone marks in CRC cell lines and primary tumors: demethylated SST1 associated with high levels of the repressive histone 3 lysine 27 trimethylation (H3K27me3) mark and lower levels of histone 3 lysine 9 trimethylation (H3K9me3). Furthermore, induced demethylation of SST1 by 5-aza-dC led to increased H3K27me3 and reduced H3K9me3. Thus, in some CRCs, SST1 demethylation reflects an epigenetic reprogramming associated with changes in chromatin structure that may affect chromosomal integrity. The chromatin remodeler factor, the helicase lymphoid-specific (HELLS) enzyme, called the "epigenetic guardian of repetitive elements", interacted with SST1 as shown by chromatin immunoprecipitation, and down-regulation of HELLS by shRNA resulted in demethylation of SST1 in vitro. Altogether these results suggest that HELLS contributes to SST1 methylation maintenance. Alterations in HELLS recruitment and function could contribute to the somatic demethylation of SST1 repeat elements undergone before and/or during CRC pathogenesis

    Cell Stress Induces Mislocalization of Transcription Factors with Mitochondrial Enrichment

    Get PDF
    Previous evidence links the formation of extranuclear inclusions of transcription factors, such as ERK, Jun, TDP-43, and REST, with oxidative, endoplasmic-reticulum, proteasomal, and osmotic stress. To further characterize its extranuclear location, we performed a high-content screening based on confocal microscopy and automatized image analyses of an epithelial cell culture treated with hydrogen peroxide, thapsigargin, epoxomicin, or sorbitol at different concentrations and times to recreate the stresses mentioned above. We also performed a subcellular fractionation of the brain from transgenic mice overexpressing the Q331K-mutated TARDBP, and we analyzed the REST-regulated mRNAs. The results show that these nuclear proteins exhibit a mitochondrial location, together with significant nuclear/extranuclear ratio changes, in a protein and stress-specific manner. The presence of these proteins in enriched mitochondrial fractions in vivo confirmed the results of the image analyses. TDP-43 aggregation was associated with alterations in the mRNA levels of the REST target genes involved in calcium homeostasis, apoptosis, and metabolism. In conclusion, cell stress increased the mitochondrial translocation of nuclear proteins, increasing the chance of proteostasis alterations. Furthermore, TDP-43 aggregation impacts REST target genes, disclosing an exciting interaction between these two transcription factors in neurodegenerative processes

    A motor neuron disease mouse model reveals a non-canonical profile of senescence biomarkers

    Full text link
    To evaluate senescence mechanisms, including senescence-associated secretory phenotype (SASP), in the motor neuron disease model hSOD1-G93A, we quantified the expression of p16 and p21 and senescence-associated Ji-galactosidase (SA-Ji-gal) in nervous tissue. As SASP markers, we measured the mRNA levels of Il1a , Il6 , Ifna and Ifnb. Furthermore, we explored whether an alteration of alternative splicing is associated with senescence by measuring the Adipor2 cryptic exon inclusion levels, a specific splicing variant repressed by TAR DNA-binding protein (TDP-43; encoded by Tardbp). Transgenic mice showed an atypical senescence profile with high p16 and p21 mRNA and protein in glia, without the canonical increase in SA-Ji-gal activity. Consistent with SASP, there was an increase in Il1a and Il6 expression, associated with increased TNF-R and M-CSF protein levels, with females being partially protected. TDP-43 splicing activity was compromised in this model, and the senolytic drug Navitoclax did not alter the disease progression. This lack of effect was reproduced in vitro , in contrast to dasatinib and quercetin, which diminished p16 and p21. Our findings show a non-canonical profile of senescence biomarkers in the model hSOD1-G93A
    • …
    corecore