14 research outputs found
Consens interdisciplinari sobre l’abordatge de la persona amb malaltia renal crònica avançada: pla operatiu de la malaltia renal crònica
Malalts crònics; Malaltia renal crònica; AbordatgeEnfermos crónicos; Enfermedad renal crónica; AbordajeChronically ill; Chronic kidney disease; ApproachEl present consens té per voluntat millorar l’atenció en aquesta fase de l’MRC, donar eines als professionals de cara a la valoració preventiva prèvia a la decisió del tractament que cal seguir en la fase d’MRCA i l’homogeneïtzació de l’atenció específica a partir de la decisió d’instaurar un tractament conservador aprofitant les eines establertes al Departament de Salut per a l’atenció a les persones amb malalties cròniques avançades (MACA)
Retos actuales de la farmacia
Retos actuales de la farmacia es un proyecto que está coordinado por Leobargo Manuel Gómez Oliván y un equipo de investigadores que forman parte del claustro de la Facultad de Química en el área de posgrado, ellos han incentivado el espíritu investigador y científico de los estudiantes adscritos al programa para adentrarse en el ámbito farmacéutico. Los capítulos que conforman esta edición son el reflejo de la actividad académica desarrollada en este posgrado en las diferentes áreas de acentuación que lo conforman: farmacia molecular, farmacia social y tecnología farmacéutica
A Brief Panorama of Artificial Intelligence in Mexico
Artificial Intelligence (AI) allows that computer-based systems learn from experience and perform a task similar to how humans would. Currently, Mexico is considered one of the Latin American countries with significant progress in adopting technologies related to AI. In this paper, we present a summary of what is happening in Mexico regarding AI. First, we introduce the concept of AI. Second, we present a timeline and speak about the Mexican society of AI and the related conferences and journals. Then, we present the academic programs and the challenges of AI. Finally, we present the conclusions
Study of the Effect of Combining Activation Functions in a Convolutional Neural Network
Convolutional Neural Networks (CNN’s) have
proven to be an effective approach for solving image
classification problems. The output, the accuracy and the
computational efficiency of a CNN are determined mainly
by the architecture, the convolutional filters, and the
activation functions. Based on the importance of an
activation function, in this paper, nine new activation
functions based on combinations of classical functions such
as ReLU and sigmoid are presented. Also, a study about the
effects caused by the activation functions in the
performance of a CNN is presented. First, every new
function is described, also, their graphs, analytic forms and
derivatives are presented. Then, a traditional CNN model
with each new activation function is used to classify three
10-class databases: MNIST, Fashion MNIST and a
handwritten digit database created by us. Experimental
results illustrate that some of the proposed activation
functions lead to better performances on classifying than
classical activation functions. Moreover, our study
demonstrated that the accuracy of a CNN could be
increased by 1.18% with the new proposed activation
functions
A Convolutional Neural Network for Handwritten Digit Recognition
Technological development in recent years has generated the constant need to digitalize and analyze data, where handwritten digit recognition is a popular problem. This paper focuses on the creation of two handwritten digit datasets and their use to train a Convolutional Neural Network (CNN) to classify them, also, a proposed extra preprocessing technique is applied to the images of one of the data sets. Experiments show that the proposed preprocessing technique lead to obtain accuracies above 98%, which were higher than the values obtained with the dataset without the additional preprocessing