30 research outputs found

    Complex structures and the Elie Cartan approach to the theory of spinors

    Get PDF
    Each isometric complex structure on a 2â„“\ell-dimensional euclidean space EE corresponds to an identification of the Clifford algebra of EE with the canonical anticommutation relation algebra for â„“\ell ( fermionic) degrees of freedom. The simple spinors in the terminology of E.~Cartan or the pure spinors in the one of C. Chevalley are the associated vacua. The corresponding states are the Fock states (i.e. pure free states), therefore, none of the above terminologies is very good.Comment: 10

    Spectral stochastic processes arising in quantum mechanical models with a non-L2 ground state

    Full text link
    A functional integral representation is given for a large class of quantum mechanical models with a non--L2 ground state. As a prototype the particle in a periodic potential is discussed: a unique ground state is shown to exist as a state on the Weyl algebra, and a functional measure (spectral stochastic process) is constructed on trajectories taking values in the spectrum of the maximal abelian subalgebra of the Weyl algebra isomorphic to the algebra of almost periodic functions. The thermodynamical limit of the finite volume functional integrals for such models is discussed, and the superselection sectors associated to an observable subalgebra of the Weyl algebra are described in terms of boundary conditions and/or topological terms in the finite volume measures.Comment: 15 pages, Plain Te

    Bose-Einstein condensate and Spontaneous Breaking of Conformal Symmetry on Killing Horizons

    Get PDF
    Local scalar QFT (in Weyl algebraic approach) is constructed on degenerate semi-Riemannian manifolds corresponding to Killing horizons in spacetime. Covariance properties of the C∗C^*-algebra of observables with respect to the conformal group PSL(2,\bR) are studied.It is shown that, in addition to the state studied by Guido, Longo, Roberts and Verch for bifurcated Killing horizons, which is conformally invariant and KMS at Hawking temperature with respect to the Killing flow and defines a conformal net of von Neumann algebras, there is a further wide class of algebraic (coherent) states representing spontaneous breaking of PSL(2,\bR) symmetry. This class is labeled by functions in a suitable Hilbert space and their GNS representations enjoy remarkable properties. The states are non equivalent extremal KMS states at Hawking temperature with respect to the residual one-parameter subgroup of PSL(2,\bR) associated with the Killing flow. The KMS property is valid for the two local sub algebras of observables uniquely determined by covariance and invariance under the residual symmetry unitarily represented. These algebras rely on the physical region of the manifold corresponding to a Killing horizon cleaned up by removing the unphysical points at infinity (necessary to describe the whole PSL(2,\bR) action).Each of the found states can be interpreted as a different thermodynamic phase, containing Bose-Einstein condensate,for the considered quantum field. It is finally suggested that the found states could describe different black holes.Comment: 36 pages, 1 figure. Formula of condensate energy density modified. Accepted for pubblication in Journal of Mathematical Physic

    Transition probabilities between quasifree states

    Get PDF
    We obtain a general formula for the transition probabilities between any state of the algebra of the canonical commutation relations (CCR-algebra) and a squeezed quasifree state. Applications of this formula are made for the case of multimode thermal squeezed states of quantum optics using a general canonical decomposition of the correlation matrix valid for any quasifree state. In the particular case of a one mode CCR-algebra we show that the transition probability between two quasifree squeezed states is a decreasing function of the geodesic distance between the points of the upper half plane representing these states. In the special case of the purification map it is shown that the transition probability between the state of the enlarged system and the product state of real and fictitious subsystems can be a measure for the entanglement.Comment: 13 pages, REVTeX, no figure

    Full regularity for a C*-algebra of the Canonical Commutation Relations. (Erratum added)

    Full text link
    The Weyl algebra,- the usual C*-algebra employed to model the canonical commutation relations (CCRs), has a well-known defect in that it has a large number of representations which are not regular and these cannot model physical fields. Here, we construct explicitly a C*-algebra which can reproduce the CCRs of a countably dimensional symplectic space (S,B) and such that its representation set is exactly the full set of regular representations of the CCRs. This construction uses Blackadar's version of infinite tensor products of nonunital C*-algebras, and it produces a "host algebra" (i.e. a generalised group algebra, explained below) for the \sigma-representation theory of the abelian group S where \sigma(.,.):=e^{iB(.,.)/2}. As an easy application, it then follows that for every regular representation of the Weyl algebra of (S,B) on a separable Hilbert space, there is a direct integral decomposition of it into irreducible regular representations (a known result). An Erratum for this paper is added at the end.Comment: An erratum was added to the original pape

    The Physical Principles of Quantum Mechanics. A critical review

    Get PDF
    The standard presentation of the principles of quantum mechanics is critically reviewed both from the experimental/operational point and with respect to the request of mathematical consistency and logical economy. A simpler and more physically motivated formulation is discussed. The existence of non commuting observables, which characterizes quantum mechanics with respect to classical mechanics, is related to operationally testable complementarity relations, rather than to uncertainty relations. The drawbacks of Dirac argument for canonical quantization are avoided by a more geometrical approach.Comment: Bibliography and section 2.1 slightly improve

    Thermal States in Conformal QFT. II

    Get PDF
    We continue the analysis of the set of locally normal KMS states w.r.t. the translation group for a local conformal net A of von Neumann algebras on the real line. In the first part we have proved the uniqueness of KMS state on every completely rational net. In this second part, we exhibit several (non-rational) conformal nets which admit continuously many primary KMS states. We give a complete classification of the KMS states on the U(1)-current net and on the Virasoro net Vir_1 with the central charge c=1, whilst for the Virasoro net Vir_c with c>1 we exhibit a (possibly incomplete) list of continuously many primary KMS states. To this end, we provide a variation of the Araki-Haag-Kastler-Takesaki theorem within the locally normal system framework: if there is an inclusion of split nets A in B and A is the fixed point of B w.r.t. a compact gauge group, then any locally normal, primary KMS state on A extends to a locally normal, primary state on B, KMS w.r.t. a perturbed translation. Concerning the non-local case, we show that the free Fermi model admits a unique KMS state.Comment: 36 pages, no figure. Dedicated to Rudolf Haag on the occasion of his 90th birthday. The final version is available under Open Access. This paper contains corrections to the Araki-Haag-Kaster-Takesaki theorem (and to a proof of the same theorem in the book by Bratteli-Robinson). v3: a reference correcte

    Abelian duality on globally hyperbolic spacetimes

    Get PDF
    We study generalized electric/magnetic duality in Abelian gauge theory by combining techniques from locally covariant quantum field theory and Cheeger-Simons differential cohomology on the category of globally hyperbolic Lorentzian manifolds. Our approach generalizes previous treatments using the Hamiltonian formalism in a manifestly covariant way and without the assumption of compact Cauchy surfaces. We construct semi-classical configuration spaces and corresponding presymplectic Abelian groups of observables, which are quantized by the CCR-functor to the category of C*-algebras. We demonstrate explicitly how duality is implemented as a natural isomorphism between quantum field theories. We apply this formalism to develop a fully covariant quantum theory of self-dual fields

    Dynamical locality of the free scalar field

    Full text link
    Dynamical locality is a condition on a locally covariant physical theory, asserting that kinematic and dynamical notions of local physics agree. This condition was introduced in [arXiv:1106.4785], where it was shown to be closely related to the question of what it means for a theory to describe the same physics on different spacetimes. In this paper, we consider in detail the example of the free minimally coupled Klein--Gordon field, both as a classical and quantum theory (using both the Weyl algebra and a smeared field approach). It is shown that the massive theory obeys dynamical locality, both classically and in quantum field theory, in all spacetime dimensions n≥2n\ge 2 and allowing for spacetimes with finitely many connected components. In contrast, the massless theory is shown to violate dynamical locality in any spacetime dimension, in both classical and quantum theory, owing to a rigid gauge symmetry. Taking this into account (equivalently, working with the massless current) dynamical locality is restored in all dimensions n≥2n\ge 2 on connected spacetimes, and in all dimensions n≥3n\ge 3 if disconnected spacetimes are permitted. The results on the quantized theories are obtained using general results giving conditions under which dynamically local classical symplectic theories have dynamically local quantizations.Comment: 34pp, LaTeX2e. Version to appear in Annales Henri Poincar
    corecore