13 research outputs found

    Microclimate variables of the ambient environment deliver the actual estimates of the extrinsic incubation period of Plasmodium vivax and Plasmodium falciparum : A study from a malaria-endemic urban setting, Chennai in India

    Get PDF
    Background: Environmental factors such as temperature, relative humidity and their daily variation influence a range of mosquito life history traits and hence, malaria transmission. The standard way of characterizing environmental factors with meteorological station data need not be the actual microclimates experienced by mosquitoes within local transmission settings. Methods: A year-long study was conducted in Chennai, India to characterize local temperature and relative humidity (RH). Data loggers (Hobos) were placed in a range of probable indoor and outdoor resting sites of Anopheles stephensi. Recordings were taken hourly to estimate mean temperature and RH, together with daily temperature range (DTR) and daily relative humidity range. The temperature data were used to explore the predicted variation in extrinsic incubation period (EIP) of Plasmodium falciparum and Plasmodium vivax between microhabitats and across the year. Results: Mean daily temperatures within the indoor settings were significantly warmer than those recorded outdoors. DTR in indoor environments was observed to be modest and ranged from 2 to 6 °C. Differences in EIP between microhabitats were most notable during the hottest summer months of April-June, with parasite development predicted to be impaired for tiled houses and overhead tanks. Overall, the prevailing warm and stable conditions suggest rapid parasite development rate regardless of where mosquitoes might rest. Taking account of seasonal and local environmental variation, the predicted EIP of P. falciparum varied from a minimum of 9.1 days to a maximum of 15.3 days, while the EIP of P. vivax varied from 8.0 to 24.3 days. Conclusions: This study provides a detailed picture of the actual microclimates experienced by mosquitoes in an urban slum malaria setting. The data indicate differences between microhabitats that could impact mosquito and parasite life history traits. The predicted effects for EIP are often relatively subtle, but variation between minimum and maximum EIPs can play a role in disease transmission, depending on the time of year and where mosquitoes rest. Appropriate characterization of the local microclimate conditions would be the key to fully understand the effects of environment on local transmission ecology

    Resting and feeding preferences of Anopheles stephensi in an urban setting, perennial for malaria

    Get PDF
    Background: The Indian city of Chennai is endemic for malaria and the known local malaria vector is Anopheles stephensi. Plasmodium vivax is the predominant malaria parasite species, though Plasmodium falciparum is present at low levels. The urban ecotype of malaria prevails in Chennai with perennial transmission despite vector surveillance by the Urban Malaria Scheme (UMS) of the National Vector Borne Disease Control Programme (NVBDCP). Understanding the feeding and resting preferences, together with the transmission potential of adult vectors in the area is essential in effective planning and execution of improved vector control measures. Methods: A yearlong survey was carried out in cattle sheds and human dwellings to check the resting, feeding preferences and transmission potential of An. stephensi. The gonotrophic status, age structure, resting and host seeking preferences were studied. The infection rate in An. stephensi and Anopheles subpictus were analysed by circumsporozoite ELISA (CS-ELISA). Results: Adult vectors were found more frequently and at higher densities in cattle sheds than human dwellings. The overall Human Blood Index (HBI) was 0.009 indicating the vectors to be strongly zoophilic. Among the vectors collected from human dwellings, 94.2% were from thatched structures and the remaining 5.8% from tiled and asbestos structures. 57.75% of the dissected vectors were nulliparous whereas, 35.83% were monoparous and the rest 6.42% biparous. Sporozoite positivity rate was 0.55% (4/720) and 1.92% (1/52) for An. stephensi collected from cattle sheds and human dwellings, respectively. One adult An. subpictus (1/155) was also found to be infected with P. falciparum. Conclusions: Control of the adult vector populations can be successful only by understanding the resting and feeding preferences. The present study indicates that adult vectors predominantly feed on cattle and cattle sheds are the preferred resting place, possibly due to easy availability of blood meal source and lack of any insecticide or repellent pressure. Hence targeting these resting sites with cost effective, socially acceptable intervention tools, together with effective larval source management to reduce vector breeding, could provide an improved integrated vector management strategy to help drive down malaria transmission and assist in India's plan to eliminate malaria by 2030

    Overhead tank is the potential breeding habitat of Anopheles stephensi in an urban transmission setting of Chennai, India

    Get PDF
    Background: Wells and overhead tanks (OHT) are the major breeding sources of the local malaria vector, Anopheles stephensi in the Indian city of Chennai; they play a significant role in vector breeding, and transmission of urban malaria. Many other man-made breeding habitats, such as cemented cisterns/containers, barrels or drums, sumps or underground tanks, and plastic pots/containers are maintained to supplement water needs, temporarily resulting in enhanced mosquito/vector breeding. Correlating breeding habitats with immature vector abundance is important in effective planning to strengthen operational execution of vector control measures. Methods: A year-long, weekly study was conducted in Chennai to inspect available clear/clean water mosquito breeding habitats. Different breeding features, such as instar-wise, immature density and co-inhabitation with other mosquito species, were analysed. The characteristics of breeding habitats, i.e., type of habitat, water temperature and presence of aquatic organisms, organic matter and green algal remnants on the water surface at the time of inspection, were also studied. Immature density of vector was correlated with presence of other mosquito species, malaria prevalence, habitat characteristics and monthly/seasonal fluctuations. All the data collected from field observations were analysed using standard statistical tools. Results: When the immature density of breeding habitats was analysed, using one-way ANOVA, it was observed that the density did not change in a significant way either across seasons or months. OHTs contributed significantly to the immature population when compared to wells and other breeding habitats of the study site. The habitat positivity of wells and OHTs was significantly associated with the presence of aquatic organisms, organic matter and algal remnants. Significant correlations of malaria prevalence with monthly immature density, as well as number of breeding habitats with immature vector mosquitoes, were also observed. Conclusions: The findings that OHTs showed fairly high and consistent immature density of An. stephensi irrespective of seasons indicates the potentiality of the breeding habitat in contributing to vector density. The correlation between vector breeding habitats, immature density and malaria prevalence indicates the proximity of these habitats to malaria cases, proving its role in vector abundance and local malaria transmission. The preference of An. stephensi to breed in OHTs calls for intensified, appropriate and sustained intervention measures to curtail vector breeding and propagation to shrink malaria to pre-elimination level and beyond

    Nations within a nation: variations in epidemiological transition across the states of India, 1990–2016 in the Global Burden of Disease Study

    Get PDF
    18% of the world's population lives in India, and many states of India have populations similar to those of large countries. Action to effectively improve population health in India requires availability of reliable and comprehensive state-level estimates of disease burden and risk factors over time. Such comprehensive estimates have not been available so far for all major diseases and risk factors. Thus, we aimed to estimate the disease burden and risk factors in every state of India as part of the Global Burden of Disease (GBD) Study 2016

    Four new species of jumping spider (Araneae: Salticidae: Aelurillinae) with the description of a new genus from South India

    No full text
    Caleb, John T. D., Mungkung, Soriephy, Mathai, Manu Thomas (2015): Four new species of jumping spider (Araneae: Salticidae: Aelurillinae) with the description of a new genus from South India. Peckhamia 124 (1): 1-18, DOI: http://doi.org/10.5281/zenodo.509297

    FIGURES 10–13 in Hersilia aadi Pravalikha, Srinivasulu & Srinivasulu, 2014 a junior synonym of Hersilia savignyi Lucas, 1836 (Araneae: Hersiliidae)

    No full text
    FIGURES 10–13. Genitalia of H. savignyi Lucas, 1836. 10 left male palp, ventral view; 11 same, prolateral view; 12 epigyne, ventral view; 13 vulva, dorsal view. Abbreviations: CO, copulatory opening; E, embolus; LAP, latero-apical process of tegular apophysis; S, spermatheca. Scale bars: (10–13) 0.5 mm

    Socio-demographic and household attributes may not necessarily influence malaria: evidence from a cross sectional study of households in an urban slum setting of Chennai, India

    No full text
    Abstract Background Household and environmental factors are reported to influence the malaria endemicity of a place. Hence, a careful assessment of these factors would, potentially help in locating the possible areas under risk to plan and adopt the most suitable and appropriate malaria control strategies. Methods A cross-sectional household survey was carried out in the study site, Besant Nagar, Chennai, through random sampling method from February 2014 to February 2015. A structured interviewer-administered questionnaire was used to assess selected variables of demography, structural particulars of a household, usage of repellents, animals on site, presence of breeding habitats and any mosquito/vector breeding in the household, malaria/vector control measures undertaken by government in each houses. The data was collected through one to one personal interview method, statistically analysed overall and compared between the households/people infected with malaria within a period of 1 year and their non-infected counterparts of the same area. Results Presence of malaria was found to be significantly associated with the occupation, number of inhabitants, presence of a separate kitchen, availability of overhead tanks and cisterns, immatures of vector mosquitoes, presence of mosquito breeding and type of roof structures (p < 0.05). However, age, gender, usage of repellents, animals on site, number of breeding habitats or detection of vector breeding did not significantly associate with the malaria incidence/prevalence. Conclusions The survey revealed various demographic, household and environmental factors likely to associate with the malaria incidence/prevalence in an urban slum of Chennai. The socio-demographic and household variables have revealed disparities in malaria infection from the present cross sectional study. The absence of significant association with many parameters indicates the probable role of other confounding factors which influence the malaria prevalence
    corecore