432 research outputs found

    Audubon County\u27s Troublesome Gang

    Get PDF

    Andrew Mulholland, Alias George Wilson

    Full text link

    Andrew Mulholland, Alias George Wilson

    Get PDF

    Can we detect Hot or Cold spots in the CMB with Minkowski Functionals?

    Full text link
    In this paper, we investigate the utility of Minkowski Functionals as a probe of cold/hot disk-like structures in the CMB. In order to construct an accurate estimator, we resolve a long-standing issue with the use of Minkowski Functionals as probes of the CMB sky -- namely that of systematic differences ("residuals") when numerical and analytical MF are compared. We show that such residuals are in fact by-products of binning, and not caused by pixelation or masking as originally thought. We then derive a map-independent estimator that encodes the effects of binning, applicable to beyond our present work. Using this residual-free estimator, we show that small disk-like effects (as claimed by Vielva et al.) can be detected only when a large sample of such maps are averaged over. In other words, our estimator is noise-dominated for small disk sizes at WMAP resolution. To confirm our suspicion, we apply our estimator to the WMAP7 data to obtain a null result.Comment: 15 pages, 13 figure

    Cosmological parameters constraints from galaxy cluster mass function measurements in combination with other cosmological data

    Full text link
    We present the cosmological parameters constraints obtained from the combination of galaxy cluster mass function measurements (Vikhlinin et al., 2009a,b) with new cosmological data obtained during last three years: updated measurements of cosmic microwave background anisotropy with Wilkinson Microwave Anisotropy Probe (WMAP) observatory, and at smaller angular scales with South Pole Telescope (SPT), new Hubble constant measurements, baryon acoustic oscillations and supernovae Type Ia observations. New constraints on total neutrino mass and effective number of neutrino species are obtained. In models with free number of massive neutrinos the constraints on these parameters are notably less strong, and all considered cosmological data are consistent with non-zero total neutrino mass \Sigma m_\nu \approx 0.4 eV and larger than standard effective number of neutrino species, N_eff \approx 4. These constraints are compared to the results of neutrino oscillations searches at short baselines. The updated dark energy equation of state parameters constraints are presented. We show that taking in account systematic uncertainties, current cluster mass function data provide similarly powerful constraints on dark energy equation of state, as compared to the constraints from supernovae Type Ia observations.Comment: Accepted for publication in Astronomy Letter

    Third quantization of f(R)f(R)-type gravity

    Full text link
    We examine the third quantization of f(R)f(R)-type gravity, based on its effective Lagrangian in the case of a flat Friedmann-Lemaitre-Robertson-Walker metric. Starting from the effective Lagrangian, we execute a suitable change of variable and the second quantization, and we obtain the Wheeler-DeWitt equation. The third quantization of this theory is considered. And the uncertainty relation of the universe is investigated in the example of f(R)f(R)-type gravity, where f(R)=R2f(R)=R^2. It is shown, when the time is late namely the scale factor of the universe is large, the spacetime does not contradict to become classical, and, when the time is early namely the scale factor of the universe is small, the quantum effects are dominating.Comment: 9 pages, Arbitrary constants in (4.19) are changed to arbitrary functions of φ\varphi. Conclusions are not changed. References are added. Typos are correcte

    Experimental Evidence for Adaptation to Species-Specific Gut Microbiota in House Mice

    Get PDF
    The gut microbial communities of mammals have codiversified with host species, and changes in the gut microbiota can have profound effects on host fitness. Therefore, the gut microbiota may drive adaptation in mammalian species, but this possibility is underexplored. Here, we show that the gut microbiota has codiversified with mice in the genus Mus over the past 6 million years, and we present experimental evidence that the gut microbiota has driven adaptive evolution of the house mouse, Mus musculus domesticus. Phylogenetic analyses of metagenomeassembled bacterial genomic sequences revealed that gut bacterial lineages have been retained within and diversified alongside Mus species over evolutionary time. Transplantation of gut microbiotas from various Mus species into germfree M. m. domesticus showed that foreign gut microbiotas slowed growth rate and upregulated macrophage inflammatory protein in hosts. These results suggest adaptation by M. m. domesticus to its gut microbiota since it diverged from other Mus species

    CARMA Measurements of the Sunyaev-Zel'dovich Effect in RXJ1347.5-1145

    Get PDF
    We demonstrate the Sunyaev-Zel'dovich (SZ) effect imaging capabilities of the Combined Array for Research in Millimeter-wave Astronomy (CARMA) by presenting an SZ map of the galaxy cluster RXJ1347.5-1145. By combining data from multiple CARMA bands and configurations, we are able to capture the structure of this cluster over a wide range of angular scales, from its bulk properties to its core morphology. We find that roughly 9% of this cluster's thermal energy is associated with sub-arcminute-scale structure imparted by a merger, illustrating the value of high-resolution SZ measurements for pursuing cluster astrophysics and for understanding the scatter in SZ scaling relations. We also find that the cluster's SZ signal is lower in amplitude than suggested by a spherically-symmetric model derived from X-ray data, consistent with compression along the line of sight relative to the plane of the sky. Finally, we discuss the impact of upgrades currently in progress that will further enhance CARMA's power as an SZ imaging instrument.Comment: 8 pages, 6 figure

    Consistency of LCDM with Geometric and Dynamical Probes

    Full text link
    The LCDM cosmological model assumes the existence of a small cosmological constant in order to explain the observed accelerating cosmic expansion. Despite the dramatic improvement of the quality of cosmological data during the last decade it remains the simplest model that fits remarkably well (almost) all cosmological observations. In this talk I review the increasingly successful fits provided by LCDM on recent geometric probe data of the cosmic expansion. I also briefly discuss some emerging shortcomings of the model in attempting to fit specific classes of data (eg cosmic velocity dipole flows and cluster halo profiles). Finally, I summarize recent results on the theoretically predicted matter overdensity (δm=δρmρm\delta_m=\frac{\delta \rho_m}{\rho_m}) evolution (a dynamical probe of the cosmic expansion), emphasizing its scale and gauge dependence on large cosmological scales in the context of general relativity. A new scale dependent parametrization which describes accurately the growth rate of perturbations even on scales larger than 100h^{-1}Mpc is shown to be a straightforward generalization of the well known scale independent parametrization f(a)=\omms(a)^\gamma valid on smaller cosmological scales.Comment: 20 pages, 6 figures. Invited review at the 1st Mediterranean Conference on Classical and Quantum Gravity (MCCQG). To appear in the proceeding
    corecore