155 research outputs found

    Increased expression of h-prune is associated with tumor progression and poor survival in gastric cancer

    Get PDF
    The human homolog of the Drosophila prune protein (from PRUNE, which encodes h-prune), which interacts with glycogen synthase kinase 3, promotes cellular motility. H-prune also interacts with nm23-H1, a suppressor of cancer metastasis. It has been reported that stimulation of cellular motility by h-prune is enhanced by its interaction with nm23-H1 in breast cancer cells. In the present study, we examined the expression of h-prune and nm23-H1 during tumor progression in gastric cancer (GC). PRUNE mRNA was overexpressed in 12 (32%) of 38 GC cases by quantitative reverse transcription-polymerase chain reaction. PRUNE mRNA levels correlated significantly with advanced T grade, N grade and tumor stage. Immunohistochemical analysis revealed that 43 (30%) of 143 GC cases were positive for h-prune, and h-prune-positive GC cases showed more advanced T grade, N grade and tumor stage than h-prune-negative GC cases. One hundred and twenty-four (87%) of 143 GC cases were positive for nm23-H1, and nm23-H1 was expressed in almost all (42 cases, 98%) h-prune-positive GC cases. Many GC cases positive for both h-prune and nm23-H1 showed more advanced T grade, N grade and tumor stage than other type GC cases. Patients with h-prune-positive GC had a significantly worse survival rate than patients with h-prune-negative GC. These findings indicate that overexpression of h-prune is associated with tumor progression and aggressiveness of GC. nm23-H1 may enhance motility of cancer cells by interacting with h-prune. (Cancer Sci 2007; 98: 1198-1205

    α-Adducin Gly460Trp Gene Mutation and Essential Hypertension in a Chinese Population: A Meta-Analysis including 10960 Subjects

    Get PDF
    BACKGROUND: The α-adducin Gly460Trp (G460W) gene polymorphism may be associated with susceptibility to essential hypertension (EH), but this relationship remains controversial. In an attempt to resolve this issue, we conducted a meta-analysis. METHODS: Twenty-three separated studies involving 5939 EH patients and 5021 controls were retrieved and analyzed. Four ethnicities were included: Han, Kazakh, Mongolian, and She. Eighteen studies with 5087 EH patients and 4183 controls were included in the Han subgroup. Three studies with 636 EH patients and 462 controls were included in the Kazakh subgroup. The Mongolian subgroup was represented by only one study with 100 EH patients and 50 controls; similarly, only one study with 116 EH patients and 326 controls was available for the She subgroup. The pooled and ethnic group odds ratios (ORs) along with the corresponding 95% confidence intervals (95% CI) were assessed using a random effects model. RESULTS: There was a significant association between the α-adducin G460W gene polymorphism and EH in the pooled Chinese population under both an allelic genetic model (OR: 1.12, 95% CI: 1.04-1.20, P = 0.002) and a recessive genetic model (OR: 1.40, 95% CI: 1.16-1.70, P = 0.0005). In contrast, no significant association between the α-adducin G460W gene polymorphism and EH was observed in the dominant genetic model (OR: 0.88, 95% CI: 0.72-1.09, P = 0.24). In stratified analysis by ethnicity, significantly increased risk was detected in the Han subgroup under an allelic genetic model (OR: 1.13, 95% CI: 1.04-1.23, P = 0.003) and a recessive genetic model (OR: 1.43, 95% CI: 1.17-1.75, P = 0.0006). CONCLUSIONS: In a Chinese population of mixed ethnicity, the α-adducin G460W gene polymorphism was linked to EH susceptibility, most strongly in Han Chinese

    Characterization and Expression of Glutamate Dehydrogenase in Response to Acute Salinity Stress in the Chinese Mitten Crab, Eriocheir sinensis

    Get PDF
    Glutamate dehydrogenase (GDH) is a key enzyme for the synthesis and catabolism of glutamic acid, proline and alanine, which are important osmolytes in aquatic animals. However, the response of GDH gene expression to salinity alterations has not yet been determined in macro-crustacean species.GDH cDNA was isolated from Eriocheir sinensis. Then, GDH gene expression was analyzed in different tissues from normal crabs and the muscle of crabs following transfer from freshwater (control) directly to water with salinities of 16‰ and 30‰, respectively. Full-length GDH cDNA is 2,349 bp, consisting of a 76 bp 5'- untranslated region, a 1,695 bp open reading frame encoding 564 amino acids and a 578 bp 3'- untranslated region. E. sinensis GDH showed 64-90% identity with protein sequences of mammalian and crustacean species. Muscle was the dominant expression source among all tissues tested. Compared with the control, GDH expression significantly increased at 6 h in crabs transferred to 16‰ and 30‰ salinity, and GDH expression peaked at 48 h and 12 h, respectively, with levels approximately 7.9 and 8.5 fold higher than the control. The free amino acid (FAA) changes in muscle, under acute salinity stress (16‰ and 30‰ salinities), correlated with GDH expression levels. Total FAA content in the muscle, which was based on specific changes in arginine, proline, glycine, alanine, taurine, serine and glutamic acid, tended to increase in crabs following transfer to salt water. Among these, arginine, proline and alanine increased significantly during salinity acclimation and accounted for the highest proportion of total FAA.E. sinensis GDH is a conserved protein that serves important functions in controlling osmoregulation. We observed that higher GDH expression after ambient salinity increase led to higher FAA metabolism, especially the synthesis of glutamic acid, which increased the synthesis of proline and alanine to meet the demand of osmoregulation at hyperosmotic conditions

    Infected erythrocyte-derived extracellular vesicles alter vascular function via regulatory Ago2-miRNA complexes in malaria

    Get PDF
    Malaria remains one of the greatest public health challenges worldwide, particularly in sub-Saharan Africa. The clinical outcome of individuals infected with Plasmodium falciparum parasites depends on many factors including host systemic inflammatory responses, parasite sequestration in tissues and vascular dysfunction. Production of pro-inflammatory cytokines and chemokines promotes endothelial activation as well as recruitment and infiltration of inflammatory cells, which in turn triggers further endothelial cell activation and parasite sequestration. Inflammatory responses are triggered in part by bioactive parasite products such as hemozoin and infected red blood cell-derived extracellular vesicles (iRBC-derived EVs). Here we demonstrate that such EVs contain functional miRNA-Argonaute 2 complexes that are derived from the host RBC. Moreover, we show that EVs are efficiently internalized by endothelial cells, where the miRNA-Argonaute 2 complexes modulate target gene expression and barrier properties. Altogether, these findings provide a mechanistic link between EVs and vascular dysfunction during malaria infection

    Enhanced prediction of breast cancer prognosis by evaluating expression of p53 and prostate-specific antigen in combination

    Get PDF
    p53 gene mutation is the most common genetic alteration in neoplastic diseases, including breast cancer, for which p53 alteration may indicate poor prognosis. Recent clinical evidence suggests that prostate-specific antigen (PSA) expression may identify breast cancer patients with favourable outcome. Assessment of p53 and PSA in combination, potentially offering improved prediction, has not yet been performed. Extracts from 952 primary breast carcinomas were assayed for PSA and p53 by quantitative enzyme-linked immunosorbent assays (ELISAs) developed by the authors. Concentrations of each marker were classified as negative or positive on the basis of median and 30th percentile cut-off points for p53 and PSA respectively. Patients followed for a median of 6 years having different combinations of negative or positive status for PSA and p53 were compared with respect to the relative risks (RRs) for relapse and death by Cox proportional hazards regression analysis, in which an interaction term was also evaluated, and with respect to disease-free survival (DFS) and overall survival (OS) probabilities by Kaplan–Meier plots and log-rank tests. Multivariate models were adjusted for oestrogen and progesterone receptor status, nodal status, patient age, tumour size, DNA ploidy, S phase fraction and receipt of chemotherapy. Interactions were not found between the status of PSA and p53 in the Cox models, in which PSA-negativity (RR = 1.47, P = 0.020 for DFS, and RR = 1.49, P = 0.023 for OS) and p53-positivity (RR = 1.46, P = 0.017 for DFS, and RR = 1.41, P = 0.033 for OS) were individually associated with prognosis. Evaluation of a combined three-level variable revealed that PSA(–)/p53(+) patients had significantly higher risks for relapse (RR = 2.13, P < 0.001) and death (RR = 2.08, P = 0.001) than PSA(+)/p53(–) patients, and that patients positive or negative for both markers had intermediate risks for the outcome events in the same multivariate analysis (RR = 1.45 for both DFS and OS). The results of our study demonstrate that the assessment of combined PSA and p53 expression status by ELISAs, easily applicable to breast tumour extracts prepared for steroid hormone receptor analyses, may stratify breast cancer patients into groups differing by relapse and death risks of greater magnitude than offered by the assessment of either p53 or PSA alone. © 1999 Cancer Research Campaig

    Aneuploidy in pluripotent stem cells and implications for cancerous transformation

    Get PDF
    Owing to a unique set of attributes, human pluripotent stem cells (hPSCs) have emerged as a promising cell source for regenerative medicine, disease modeling and drug discovery. Assurance of genetic stability over long term maintenance of hPSCs is pivotal in this endeavor, but hPSCs can adapt to life in culture by acquiring non-random genetic changes that render them more robust and easier to grow. In separate studies between 12.5% and 34% of hPSC lines were found to acquire chromosome abnormalities over time, with the incidence increasing with passage number. The predominant genetic changes found in hPSC lines involve changes in chromosome number and structure (particularly of chromosomes 1, 12, 17 and 20), reminiscent of the changes observed in cancer cells. In this review, we summarize current knowledge on the causes and consequences of aneuploidy in hPSCs and highlight the potential links with genetic changes observed in human cancers and early embryos. We point to the need for comprehensive characterization of mechanisms underpinning both the acquisition of chromosomal abnormalities and selection pressures, which allow mutations to persist in hPSC cultures. Elucidation of these mechanisms will help to design culture conditions that minimize the appearance of aneuploid hPSCs. Moreover, aneuploidy in hPSCs may provide a unique platform to analyse the driving forces behind the genome evolution that may eventually lead to cancerous transformation

    Phase II trial of radiotherapy after hyperbaric oxygenation with chemotherapy for high-grade gliomas

    Get PDF
    We conducted a phase II trial to evaluate the efficacy and toxicity of radiotherapy immediately after hyperbaric oxygenation (HBO) with chemotherapy in adults with high-grade gliomas. Patients with histologically confirmed high-grade gliomas were administered radiotherapy in daily 2 Gy fractions for 5 consecutive days per week up to a total dose of 60 Gy. Each fraction was administered immediately after HBO with the period of time from completion of decompression to irradiation being less than 15 min. Chemotherapy consisted of procarbazine, nimustine (ACNU) and vincristine and was administered during and after radiotherapy. A total of 41 patients (31 patients with glioblastoma and 10 patients with grade 3 gliomas) were enrolled. All 41 patients were able to complete a total radiotherapy dose of 60 Gy immediately after HBO with one course of concurrent chemotherapy. Of 30 assessable patients, 17 (57%) had an objective response including four CR and 13 PR. The median time to progression and the median survival time in glioblastoma patients were 12.3 months and 17.3 months, respectively. On univariate analysis, histologic grade (P=0.0001) and Karnofsky performance status (P=0.036) had a significant impact on survival, and on multivariate analysis, histologic grade alone was a significant prognostic factor for survival (P=0.001). Although grade 4 leukopenia and grade 4 thrombocytopenia occurred in 10 and 7% of all patients, respectively, these were transient with no patients developing neutropenic fever or intracranial haemorrhage. No serious nonhaematological or late toxicities were seen. These results indicated that radiotherapy delivered immediately after HBO with chemotherapy was safe with virtually no late toxicity in patients with high-grade gliomas. Further studies are required to strictly evaluate the effectiveness of radiotherapy after HBO for these tumours

    Behavioural and Physiological Responses of Gammarus pulex Exposed to Cadmium and Arsenate at Three Temperatures: Individual and Combined Effects

    Get PDF
    This study aimed at investigating both the individual and combined effects of cadmium (Cd) and arsenate (AsV) on the physiology and behaviour of the Crustacean Gammarus pulex at three temperatures (5, 10 and15°C). G. pulex was exposed during 96 h to (i) two [Cd] alone, (ii) two [AsV] alone, and (iii) four combinations of [Cd] and [AsV] to obtain a complete factorial plane. After exposure, survival, [AsV] or [Cd] in body tissues, behavioural (ventilatory and locomotor activities) and physiological responses (iono-regulation of [Na+] and [Cl−] in haemolymph) were examined. The interactive effects (antagonistic, additive or synergistic) of binary mixtures were evaluated for each tested temperature using a predictive model for the theoretically expected interactive effect of chemicals. In single metal exposure, both the internal metal concentration in body tissues and the mortality rate increased along metallic gradient concentration. Cd alone significantly impaired both [Na+] and [Cl−] while AsV alone had a weak impact only on [Cl−]. The behavioural responses of G. pulex declined with increasing metal concentration suggesting a reallocation of energy from behavioural responses to maintenance functions. The interaction between AsV and Cd was considered as ‘additive’ for all the tested binary mixtures and temperatures (except for the lowest combination at 10°C considered as “antagonistic”). In binary mixtures, the decrease in both ventilatory and locomotor activities and the decline in haemolymphatic [Cl−] were amplified when respectively compared to those observed with the same concentrations of AsV or Cd alone. However, the presence of AsV decreased the haemolymphatic [Na+] loss when G. pulex was exposed to the lowest Cd concentration. Finally, the observed physiological and behavioural effects (except ventilation) in G. pulex exposed to AsV and/or Cd were exacerbated under the highest temperature. The discussion encompasses both the toxicity mechanisms of these metals and their interaction with rising temperature
    corecore