25 research outputs found

    Multichannel read-out for arrays of metallic magnetic calorimeters

    Full text link
    Metallic magnetic micro-calorimeters (MMCs) operated at millikelvin temperature offer the possibility to achieve eV-scale energy resolution with high stopping power for X-rays and massive particles in an energy range up to several tens of keV. This motivates their use in a wide range of applications in fields as particle physics, atomic and molecular physics. Present detector systems consist of MMC arrays read out by 32 two-stage SQUID read-out channels. In contrast to the design of the detector array and consequently the design of the front-end SQUIDs, which need to be optimised for the physics case and the particles to be detected in a given experiment, the read-out chain can be standardised. We present our new standardised 32-channel parallel read-out for the operation of MMC arrays to be operated in a dilution refrigerator. The read-out system consists of a detector module, whose design depends on the particular application, an amplifier module, ribbon cables from room temperature to the millikelvin platform and a data acquisition system. In particular, we describe the realisation of the read-out system prepared for the ECHo-1k experiment for the operation of two 64-pixel arrays. The same read-out concept is also used for the maXs detector systems, developed for the study of the de-excitation of highly charged heavy ions by X-rays, as well as for the MOCCA system, developed for the energy and position sensitive detection of neutral molecular fragments for the study of fragmentation when molecular ions recombine with electrons. The choice of standard modular components for the operation of 32-channel MMC arrays offer the flexibility to upgrade detector modules without the need of any changes in the read-out system and the possibility to individually exchange parts in case of damages or failures

    High-resolution and low-background 163^{163}Ho spectrum: interpretation of the resonance tails

    Get PDF
    The determination of the effective electron neutrino mass via kinematic analysis of beta and electron capture spectra is considered to be model-independent since it relies on energy and momentum conservation. At the same time the precise description of the expected spectrum goes beyond the simple phase space term. In particular for electron capture processes, many-body electron-electron interactions lead to additional structures besides the main resonances in calorimetrically measured spectra. A precise description of the 163^{163}Ho spectrum is fundamental for understanding the impact of low intensity structures at the endpoint region where a finite neutrino mass affects the shape most strongly. We present a low-background and high-energy resolution measurement of the 163^{163}Ho spectrum obtained in the framework of the ECHo experiment. We study the line shape of the main resonances and multiplets with intensities spanning three orders of magnitude. We discuss the need to introduce an asymmetric line shape contribution due to Auger–Meitner decay of states above the auto-ionisation threshold. With this we determine an enhancement of count rate at the endpoint region of about a factor of 2, which in turn leads to an equal reduction in the required exposure of the experiment to achieve a given sensitivity on the effective electron neutrino mass

    The electron capture in 163^{163}Ho experiment – ECHo

    Get PDF
    Neutrinos, and in particular their tiny but non-vanishing masses, can be considered one of the doors towards physics beyond the Standard Model. Precision measurements of the kinematics of weak interactions, in particular of the 3^{3}H ÎČ-decay and the 163^{163}Ho electron capture (EC), represent the only model independent approach to determine the absolute scale of neutrino masses. The electron capture in 163^{163}Ho experiment, ECHo, is designed to reach sub-eV sensitivity on the electron neutrino mass by means of the analysis of the calorimetrically measured electron capture spectrum of the nuclide 163^{163}Ho. The maximum energy available for this decay, about 2.8 keV, constrains the type of detectors that can be used. Arrays of low temperature metallic magnetic calorimeters (MMCs) are being developed to measure the 163^{163}Ho EC spectrum with energy resolution below 3 eV FWHM and with a time resolution below 1 Όs. To achieve the sub-eV sensitivity on the electron neutrino mass, together with the detector optimization, the availability of large ultra-pure 163^{163}Ho samples, the identification and suppression of background sources as well as the precise parametrization of the 163^{163}Ho EC spectrum are of utmost importance. The high-energy resolution 163^{163}Ho spectra measured with the first MMC prototypes with ion-implanted 163^{163}Ho set the basis for the ECHo experiment. We describe the conceptual design of ECHo and motivate the strategies we have adopted to carry on the present medium scale experiment, ECHo-1K. In this experiment, the use of 1 kBq 163^{163}Ho will allow to reach a neutrino mass sensitivity below 10 eV/c2^{2}. We then discuss how the results being achieved in ECHo-1k will guide the design of the next stage of the ECHo experiment, ECHo-1M, where a source of the order of 1 MBq 163^{163}Ho embedded in large MMCs arrays will allow to reach sub-eV sensitivity on the electron neutrino mass

    Progress in the development of a KITWPA for the DARTWARS project

    Get PDF
    DARTWARS (Detector Array Readout with Traveling Wave AmplifieRS) is a three years project that aims to develop high-performing innovative Traveling Wave Parametric Amplifiers (TWPAs) for low temperature detectors and qubit readout (C-band). The practical development follows two different promising approaches, one based on the Josephson junctions (TWJPA) and the other one based on the kinetic inductance of a high-resistivity superconductor (KITWPA). This paper presents the advancements made by the DARTWARS collaboration to produce a first working prototype of a KITWPA.Comment: 3 pages, 4 figures. Proceeding of Pisa15th Meeting conferenc

    The electron capture in 163Ho experiment – ECHo

    Full text link

    Study of muon-induced background in MMC detector arrays for the ECHo experiment

    No full text
    For above ground particle physics experiments, cosmic muons are common source of background, not only for direct detector hits, but also for secondary radiation created in neighboring materials. The ECHo experiment has been designed for the determination of the effective electron neutrino mass by the analysis of the endpoint region of the 163Ho^{163}\text {Ho} electron capture spectrum. The fraction of events occurring in the region of interest of 10 eV below the QECQ_{\mathrm {EC}} value of about 2.8 keV is only of the order of 10−910^{-9}. This means that the background in that region need to be studied, characterized and methods to suppress it need to be developed. We expect a major background contribution to be due to cosmic muons and radiation produced by muons traveling through material around the detectors. To determine the muon-related background in metallic magnetic calorimeters (MMCs) used in the ECHo experiment, we have performed an experiment in which a muon veto was installed around the cryostat used for the operation of the detectors. We analysed the acquired events to investigate the pulse shape of MMC events in coincidence with the muon veto and the rate of multiple coincidences among detector array pixels. With different methods used for identification of muon related events, we studied events generated by muons and secondary radiation depositing energy in the substrate close to the ECHo pixels. In addition, energy depositions of muons and secondary radiation in the detectors was studied via Monte Carlo simulation. At the present status of investigation, we conclude that muon related events will be a negligible background in the region of interest of the 163Ho^{163}\text {Ho} spectrum

    Study of naturally occurring radionuclides in the ECHo set-up

    No full text
    The determination of the effective electron neutrino mass by analyzing the end point region of the 163^{163}Ho electron capture (EC) spectrum relies on the precise description of the expected 163^{163}Ho events and background events. In the ECHo experiment, arrays of metallic magnetic calorimeters, implanted with 163^{163}Ho, are operated to measure the 163^{163}Ho EC spectrum. In an energy range of 10 eV below QECQ_{\mathrm {EC}}, the maximum available energy for the EC decay of about 2.8 keV, a 163^{163}Ho event rate of the order of 10−410^{-4} day−1^{-1} pixel−1^{-1} is expected for an activity of 1 Bq of 163^{163}Ho per pixel. This means, a control of the background level in the order of 10−510^{-5} day−1^{-1} pixel−1^{-1} is extremely important. We discuss the results of a Monte Carlo study based on simulations, which use the GEANT4 framework to understand the impact of natural radioactive isotopes close to the active detector volume in the case of the ECHo-1k set-up, which is used for the first phase of the ECHo experiment. For this, the ECHo-1k set-up was modeled in GEANT4 using the proper geometry and materials, including the information of screening measurements of some materials used in the ECHo-1k set-up and reasonable assumptions. Based on the simulation and on assumptions, we derive the expected background around QECQ_{\mathrm {EC}} and give upper limits of tolerable concentrations of natural radionuclides in the set-up materials. In addition, we compare our results to background spectra acquired in detector pixels with and without implanted 163^{163}Ho. We conclude that typical concentration of radioactive nuclides found in the used materials should not endanger the analysis of the endpoint region of the 163^{163}Ho EC spectrum for an exposure time of half a year

    Metallic magnetic calorimeter arrays for the first phase of the ECHo experiment

    No full text
    The ECHo experiment has been designed for the determination of the effective electron neutrino mass by means of the analysis of the end-point region of the Ho-163 electron capture spectrum. Metallic magnetic calorimeters enclosing Ho-163 are used for the high energy resolution calorimetric measurement of the Ho-163 spectrum. For the first phase of the experiment, ECHo-1k, a 72-pixel MMC array has been developed. The single-pixel design has been optimised to reach 100% stopping power for the radiation emitted in the Ho-163 electron capture process (besides the electron neutrino) and an energy resolution . We describe the design of the ECHo-1k detector chip, the fabrication steps and the characterisation at room temperature, at 4 K and at the final operation temperatures. In particular, a detailed analysis of the results from these tests allowed to define a quality check protocol based on parameters measurable at room temperature. We discuss the performance achieved with the two ECHo-1k detector chips – the first one with 163Ho implanted in gold and the second one with Ho-163 implanted in silver – which have been used for the high statistics measurement of the ECHo-1k experiment. An average activity per pixel of and and an average energy resolution of FWHM and FWHM have been achieved with these two detectors, fulfilling the requirements for the first phase of the ECHo experiment

    From ECHo-1k to ECHo-100k:Optimization of High-Resolution Metallic Magnetic Calorimeters with Embedded 163Ho^{163}Ho for Neutrino Mass Determination

    No full text
    The ECHo experiment aims at determining the effective electron neutrino mass by analyzing the endpoint of the Ho-163 electron capture spectrum. High energy resolution detectors with a well-tailored detector response are the essential ingredient for the success of the ECHo experiment. Metallic magnetic calorimeter arrays enclosing Ho-163 have been chosen for the ECHo experiment. The first MMC array, ECHo-1k, showed excellent performances with an average energy resolution of 5.5 eV FWHM @ 5.9 keV. Based on the results obtained with the ECHo-1k array, optimization studies have paved the way towards a new detector design for the next experimental phase, ECHo-100k. The ECHo-100k chip features an optimized single pixel design to improve the detector performance as well as an upgraded on-chip thermalization layout. The newly fabricated ECHo-100k detectors have been fully characterized at room temperature, at 4 K and at millikelvin temperature. The obtained results show that the ECHo-100k array achieved the expected performance with an average energy resolution of 3.5 eV FWHM @ 5.9 keV, fulfilling the requirements for the ECHo-100k experimental phase
    corecore