562 research outputs found

    Variational Approach to Hard Sphere Segregation Under Gravity

    Full text link
    It is demonstrated that the minimization of the free energy functional for hard spheres and hard disks yields the result that excited granular materials under gravity segregate not only in the widely known "Brazil nut" fashion, i.e. with the larger particles rising to the top, but also in reverse "Brazil nut" fashion. Specifically, the local density approximation is used to investigate the crossover between the two types of segregation occurring in the liquid state, and the results are found to agree qualitatively with previously published results of simulation and of a simple model based on condensation.Comment: 10 pages, 3 figure

    Equilibrium phase behavior of polydisperse hard spheres

    Full text link
    We calculate the phase behavior of hard spheres with size polydispersity, using accurate free energy expressions for the fluid and solid phases. Cloud and shadow curves, which determine the onset of phase coexistence, are found exactly by the moment free energy method, but we also compute the complete phase diagram, taking full account of fractionation effects. In contrast to earlier, simplified treatments we find no point of equal concentration between fluid and solid or re-entrant melting at higher densities. Rather, the fluid cloud curve continues to the largest polydispersity that we study (14%); from the equilibrium phase behavior a terminal polydispersity can thus only be defined for the solid, where we find it to be around 7%. At sufficiently large polydispersity, fractionation into several solid phases can occur, consistent with previous approximate calculations; we find in addition that coexistence of several solids with a fluid phase is also possible

    Development of an EM Device for Cerebrovascular Diseases Imaging and Hardware Acceleration for Imaging Algorithms within the EMERALD Network

    Get PDF
    This paper is presenting the first months of research activities within the Marie Skłodowska-Curie Innovative Training Network “EMERALD” developed by the Politecnico di Torino group. Our research work is related to the development of an electromagnetic device for cerebrovascular diseases imaging and to the hardware acceleration of the implemented imaging algorithms via field-programmable gate arrays or application-specific integrated circuits coupled with regular multicore central processing units and even graphics processing unit

    Predicting phase equilibria in polydisperse systems

    Full text link
    Many materials containing colloids or polymers are polydisperse: They comprise particles with properties (such as particle diameter, charge, or polymer chain length) that depend continuously on one or several parameters. This review focusses on the theoretical prediction of phase equilibria in polydisperse systems; the presence of an effectively infinite number of distinguishable particle species makes this a highly nontrivial task. I first describe qualitatively some of the novel features of polydisperse phase behaviour, and outline a theoretical framework within which they can be explored. Current techniques for predicting polydisperse phase equilibria are then reviewed. I also discuss applications to some simple model systems including homopolymers and random copolymers, spherical colloids and colloid-polymer mixtures, and liquid crystals formed from rod- and plate-like colloidal particles; the results surveyed give an idea of the rich phenomenology of polydisperse phase behaviour. Extensions to the study of polydispersity effects on interfacial behaviour and phase separation kinetics are outlined briefly.Comment: 48 pages, invited topical review for Journal of Physics: Condensed Matter; uses Institute of Physics style file iopart.cls (included

    The relationship between video display terminals (VDTs) usage and dermatologic manifestations : a cross sectional study

    Get PDF
    BACKGROUND: Recently, it has been observed that Video Display Terminals (VDTs) usage for long periods can cause some dermatological manifestations on the face. An analytical cross-sectional study was designed in order to determine this relationship. METHODS: In this study, 600 office workers were chosen randomly from an organization in Tehran (Iran). The subjects were then divided into two groups based on their exposure to VDTs. 306 workers were considered exposure negative (non VDT user) who worked less than 7 hours a week with VDTs. The remainders 294 were exposure-positive, who worked 7 hours or more with VDTs. The frequency of dermatologic manifestations was compared in these two groups. RESULTS: In the exposure-positive and exposure-negative groups, the frequency of these dermatologic manifestations were 27 and 5 respectively. After statistical analysis, a P.value of < 0.05 was obtained indicating a statistically significant difference between these two groups for dermatological manifestations. CONCLUSION: According to our study, there is a relationship between dermatologic manifestations on the face and exposure to VDTs

    Predicting enhanced absorption of light gases in polyethylene using simplified PC-SAFT and SAFT-VR

    Get PDF
    International audienceAbsorption of light gases in polyethylene (PE) is studied using two versions of the Statistical Associating Fluid Theory (SAFT): SAFT for chain molecules with attractive potentials of variable range (VR) and simplified perturbed-chain (PC) SAFT. Emphasis is placed on the light gases typically present during ethylene polymerisation in the gas-phase reactor (GPR) process. The two approaches are validated using experimental binary-mixture data for gas absorbed in PE, and predictions are made for mixtures of more components. For most cases studied both SAFT versions perform equally well. For the case of ternary mixtures of two gases with PE, it is predicted that the less-volatile of the two gases acts to enhance the absorption of the more-volatile gas, while the more-volatile gas inhibits the absorption of the less-volatile gas. This general behaviour is also predicted in mixtures containing more gases, such as typical reactor mixtures. The magnitude of the effect may vary considerably, depending on the relative proximity of the gas-mixture saturation pressure to the reactor pressure; for example it is predicted that the absorption of ethylene may be approximately doubled if diluent gases, propane or nitrogen, are partially or completely replaced by less-volatile butane or pentane for a reactor pressure similar to 2 MPa. In the case of a co-polymerisation reaction, it is predicted that increases in absorption of both co-monomers may be obtained in roughly equal proportion. Our findings cast light on the so-called co-monomer effect, in which substantial increases in the rate of ethylene polymerisation are observed in the presence of hexene co-monomer, while suggesting that the effect is more general and not restricted to co-monomer. For example, similar rate increases may be expected in the presence of, e.g., pentane instead of hexene, but without the change in the branch structure of the produced polymer that is inevitable when the amount of co-monomer is increased

    Measurements of Non-Wetting Phase Trapping Applied to Carbon Dioxide Storage

    Get PDF
    We measure the trapped non-wetting phase saturation as a function of the initial saturation in sand packs. The application of the work is for carbon dioxide (CO2) storage in aquifers where capillary trapping is a rapid and effective mechanism to render injected CO2 immobile. We used analogue fluids at ambient conditions. The trapped saturation initially rises linearly with initial saturation to a value of 0.11 for oil/water systems and 0.14 for gas/water systems. There then follows a region where the residual saturation is constant with further increases in initial saturation
    corecore