58 research outputs found
Learning morphological phenomena of Modern Greek an exploratory approach
This paper presents a computational model for the description of concatenative morphological phenomena of modern Greek (such as inflection, derivation and compounding) to allow learners, trainers and developers to explore linguistic processes through their own constructions in an interactive open‐ended multimedia environment. The proposed model introduces a new language metaphor, the ‘puzzle‐metaphor’ (similar to the existing ‘turtle‐metaphor’ for concepts from mathematics and physics), based on a visualized unification‐like mechanism for pattern matching. The computational implementation of the model can be used for creating environments for learning through design and learning by teaching
Hypothalamus proteomics from mouse models with obesity and anorexia reveals therapeutic targets of appetite regulation
Objective: This study examined the proteomic profile of the hypothalamus in mice exposed to a high-fat diet (HFD) or with the anorexia of acute illness. This comparison could provide insight on the effects of these two opposite states of energy balance on appetite regulation.Methods: Four to six-week-old male C56BL/6J mice were fed a normal (control 1 group; n=7) or a HFD (HFD group; n=10) for 8 weeks. The control 2 (n=7) and lipopolysaccharide (LPS) groups (n=10) were fed a normal diet for 8 weeks before receiving an injection of saline and LPS, respectively. Hypothalamic regions were analysed using a quantitative proteomics method based on a combination of techniques including iTRAQ stable isotope labeling, orthogonal two-dimensional liquid chromatography hyphenated with nanospray ionization and high-resolution mass spectrometry. Key proteins were validated with quantitative PCR.Results: Quantitative proteomics of the hypothalamous regions profiled a total of 9249 protein groups (q<0.05). Of these, 7718 protein groups were profiled with a minimum of two unique peptides for each. Hierachical clustering of the differentiated proteome revealed distinct proteomic signatures for the hypothalamus under the HFD and LPS nutritional conditions. Literature research with in silico bioinformatics interpretation of the differentiated proteome identified key biological relevant proteins and implicated pathways. Furthermore, the study identified potential pharmacologic targets. In the LPS groups, the anorexigen pro-opiomelanocortin was downregulated. In mice with obesity, nuclear factor-?B, glycine receptor subunit alpha-4 (GlyR) and neuropeptide Y levels were elevated, whereas serotonin receptor 1B levels decreased.Conclusions: High-precision quantitative proteomics revealed that under acute systemic inflammation in the hypothalamus as a response to LPS, homeostatic mechanisms mediating loss of appetite take effect. Conversely, under chronic inflammation in the hypothalamus as a response to HFD, mechanisms mediating a sustained ‘perpetual cycle’ of appetite enhancement were observed. The GlyR protein may constitute a novel treatment target for the reduction of central orexigenic signals in obesity
Increased plasma CD14 levels 1 year postpartum in women with pre-eclampsia during pregnancy: a case–control plasma proteomics study
Epidemiological data suggest that pre-eclampsia (PE) is associated with an increased risk of post-delivery metabolic dysregulation. The aim of the present case–control observational study was to examine the global plasma proteomic profile 1 year postpartum in women who developed PE during pregnancy (n = 5) compared to controls (n = 5), in order to identify a novel predictive marker linking PE with long-term metabolic imbalance. Key findings were verified with enzyme-linked immunosorbent assay (ELISA) in a separate cohort (n = 17 women with PE and n = 43 controls). One hundred and seventy-two proteins were differentially expressed in the PE vs. control groups. Gene ontology analysis showed that Inflammatory|Immune responses, Blood coagulation and Metabolism were significantly enriched terms. CD14, mapping to the inflammatory response protein network, was selected for verification based on bibliographic evidence. ELISA measurements showed CD14 to be significantly increased 1 year postpartum in women with PE during pregnancy compared to controls [PE group (median ± SD): 296.5 ± 113.6; control group (median ± SD): 128.9 ± 98.5; Mann–Whitney U test p = 0.0078]. Overall, the identified proteins could provide insight into the long-term disease risk among women with PE during pregnancy and highlight the need for their postpartum monitoring. CD14 could be examined in larger cohorts as a predictive marker of insulin resistance and type II diabetes mellitus among women with PE
Modulation of the tumour promoting functions of cancer associated fibroblasts by phosphodiesterase type 5 inhibition increases the efficacy of chemotherapy in human preclinical models of esophageal adenocarcinoma
Background and aims: Esophageal adenocarcinoma (EAC) is chemoresistant in the majority of cases. The tumor-promoting biology of cancer associated fibroblasts (CAF) make them a target for novel therapies. Phosphodiesterase type 5 inhibitors (PDE5i) have been shown to regulate the activated fibroblast phenotype in benign disease. We investigated the potential for CAF modulation in EAC using PDE5i to enhance the efficacy of chemotherapy. Methods: EAC fibroblasts were treated with PDE5i and phenotypic effects examined using immunoblotting, immunohistochemistry, gel contraction, transwell invasion, organotypics, single cell RNAseq and shotgun proteomics. The combination of PDE5i with standard-of-care chemotherapy (Epirubicin, 5-Fluorouracil and Cisplatin) was tested for safety and efficacy in validated near-patient model systems (3D tumor growth assays (3D-TGAs) and patient derived xenograft (PDX) mouse models). Results: PDE5i treatment reduced alpha-SMA expression in CAFs by 50% (p<0.05), associated with a significant reduction in the ability of CAFs to contract collagen-1 gels and induce cancer cell invasion, (p<0.05). RNAseq and proteomic analysis of CAF and EAC cell lines revealed PDE5i specific regulation of pathways related to fibroblast activation and tumor promotion. 3D-TGA assays confirmed the importance of stromal cells to chemoresistance in EAC, which could be attenuated by PDE5i. Chemotherapy+PDE5i in PDX-bearing mice was safe and significantly reduced PDX tumor volume (p<0.05). Conclusion: PDE5 is a candidate for clinical trials to alter the fibroblast phenotype in esophageal cancer. We demonstrate the specificity of PDE5i for fibroblasts to prevent transdifferentiation and revert the CAF phenotype. Finally, we confirm the efficacy of PDE5i in combination with chemotherapy in close-to-patient in vitro and in vivo PDX-based model systems
Comprehensive plasma proteomic profiling reveals biomarkers for active tuberculosis
BACKGROUND. Tuberculosis (TB) kills more people than any other infection, and new diagnostic tests to identify active cases are required. We aimed to discover and verify novel markers for TB in nondepleted plasma. /
METHODS. We applied an optimized quantitative proteomics discovery methodology based on multidimensional and orthogonal liquid chromatographic separation combined with high-resolution mass spectrometry to study nondepleted plasma of 11 patients with active TB compared with 10 healthy controls. Prioritized candidates were verified in independent UK (n = 118) and South African cohorts (n = 203). /
RESULTS. We generated the most comprehensive TB plasma proteome to date, profiling 5022 proteins spanning 11 orders-of-magnitude concentration range with diverse biochemical and molecular properties. We analyzed the predominantly low–molecular weight subproteome, identifying 46 proteins with significantly increased and 90 with decreased abundance (peptide FDR ≤ 1%, q ≤ 0.05). Verification was performed for novel candidate biomarkers (CFHR5, ILF2) in 2 independent cohorts. Receiver operating characteristics analyses using a 5-protein panel (CFHR5, LRG1, CRP, LBP, and SAA1) exhibited discriminatory power in distinguishing TB from other respiratory diseases (AUC = 0.81). /
CONCLUSION. We report the most comprehensive TB plasma proteome to date, identifying novel markers with verification in 2 independent cohorts, leading to a 5-protein biosignature with potential to improve TB diagnosis. With further development, these biomarkers have potential as a diagnostic triage test. /
FUNDING. Colciencias, Medical Research Council, Innovate UK, NIHR, Academy of Medical Sciences, Program for Advanced Research Capacities for AIDS, Wellcome Centre for Infectious Diseases Research
Mixed effects of suberoylanilide hydroxamic acid (SAHA) on the host transcriptome and proteome and their implications for HIV reactivation from latency
Suberoylanilide hydroxamic acid (SAHA) has been assessed in clinical trials as part of a “shock and kill” strategy to cure HIV-infected patients. While it was effective at inducing expression of HIV RNA (“shock”), treatment with SAHA did not result in a reduction of reservoir size (“kill”). We therefore utilized a combined analysis of effects of SAHA on the host transcriptome and proteome to dissect its mechanisms of action that may explain its limited success in “shock and kill” strategies. CD4+ T cells from HIV seronegative donors were treated with 1 µM SAHA or its solvent dimethyl sulfoxide (DMSO) for 24 hours. Protein expression and post-translational modifications were measured with iTRAQ proteomics using ultra high-precision two-dimensional liquid chromatography - tandem mass spectrometry. Gene expression was assessed by Illumina microarrays. Using limma package in the R computing environment, we identified 185 proteins, 18 phosphorylated forms, 4 acetylated forms and 2,982 genes, whose expression was modulated by SAHA. A protein interaction network integrating these 4 data types identified the HIV transcriptional repressor HMGA1 to be upregulated by SAHA at the transcript, protein and acetylated protein levels. Further functional category assessment of proteins and genes modulated by SAHA identified gene ontology terms related to NFκB signaling, protein folding and autophagy, which are all relevant to HIV reactivation. In summary, SAHA modulated numerous host cell transcripts, proteins and post-translational modifications of proteins, which would be expected to have very mixed effects on the induction of HIV-specific transcription and protein function. Proteome profiling highlighted a number of potential counter-regulatory effects of SAHA with respect to viral induction, which transcriptome profiling alone would not have identified. These observations could lead to a more informed selection and design of other HDACi with a more refined targeting profile, and prioritization of latency reversing agents of other classes to be used in combination with SAHA to achieve more potent induction of HIV expression
Increased circulating resistin levels in early-onset breast cancer patients of normal body mass index correlate with lymph node negative involvement and longer disease free survival: a multi-center POSH cohort serum proteomics study.
BACKGROUND: Early-onset breast cancer (EOBC) affects about one in 300 women aged 40 years or younger and is associated with worse outcomes than later onset breast cancer. This study explored novel serum proteins as surrogate markers of prognosis in patients with EOBC. METHODS: Serum samples from EOBC patients (stages 1-3) were analysed using agnostic high-precision quantitative proteomics. Patients received anthracycline-based chemotherapy. The discovery cohort (n = 399) either had more than 5-year disease-free survival (DFS) (good outcome group, n = 203) or DFS of less than 2 years (poor outcome group, n = 196). Expressed proteins were assessed for differential expression between the two groups. Bioinformatics pathway and network analysis in combination with literature research were used to determine clinically relevant proteins. ELISA analysis against an independent sample set from the Prospective study of Outcomes in Sporadic versus Hereditary breast cancer (POSH) cohort (n = 181) was used to validate expression levels of the selected target. Linear and generalized linear modelling was applied to determine the effect of target markers, body mass index (BMI), lymph node involvement (LN), oestrogen receptor (ER), progesterone receptor and human epidermal growth factor receptor 2 status on patients' outcome. RESULTS: A total of 5346 unique proteins were analysed (peptide FDR p ≤ 0.05). Of these, 812 were differentially expressed in the good vs poor outcome groups and showed significant enrichment for the insulin signalling (p = 0.01) and the glycolysis/gluconeogenesis (p = 0.01) pathways. These proteins further correlated with interaction networks involving glucose and fatty acid metabolism. A consistent nodal protein to these metabolic networks was resistin (upregulated in the good outcome group, p = 0.009). ELISA validation demonstrated resistin to be upregulated in the good outcome group (p = 0.04), irrespective of BMI and ER status. LN involvement was the only covariate with a significant association with resistin measurements (p = 0.004). An ancillary in-silico observation was the induction of the inflammatory response, leucocyte infiltration, lymphocyte migration and recruitment of phagocytes (p 2). Survival analysis showed that resistin overexpression was associated with improved DFS. CONCLUSIONS: Higher circulating resistin correlated with node-negative patients and longer DFS independent of BMI and ER status in women with EOBC. Overexpression of serum resistin in EOBC may be a surrogate indicator of improved prognosis
Induction of Amyloid-beta(42) Production by Fipronil and Other Pyrazole Insecticides
Generation of amyloid-β peptides (Aβs) by proteolytic cleavage of the amyloid-β protein precursor (AβPP), especially increased production of Aβ42/Aβ43 over Aβ40, and their aggregation as oligomers and plaques, represent a characteristic feature of Alzheimer’s disease (AD). In familial AD (FAD), altered Aβ production originates from specific mutations of AβPP or presenilins 1/2 (PS1/PS2), the catalytic subunits of γ-secretase. In sporadic AD, the origin of altered production of Aβs remains unknown. We hypothesize that the ‘human chemical exposome’ contains products able to favor the production of Aβ42/Aβ43 over Aβ40 and shorter Aβs. To detect such products, we screened a library of 3500 + compounds in a cell-based assay for enhanced Aβ42/Aβ43 production. Nine pyrazole insecticides were found to induce a β- and γ-secretase-dependent, 3-10-fold increase in the production of extracellular Aβ42 in various cell lines and neurons differentiated from induced pluripotent stem cells derived from healthy and FAD patients. Immunoprecipitation/mass spectrometry analyses showed increased production of Aβs cleaved at positions 42/43, and reduced production of peptides cleaved at positions 38 and shorter. Strongly supporting a direct effect on γ-secretase activity, pyrazoles shifted the cleavage pattern of another γ-secretase substrate, alcadeinα, and shifted the cleavage of AβPP by highly purified γ-secretase toward Aβ42/Aβ43. Focusing on fipronil, we showed that some of its metabolites, in particular the persistent fipronil sulfone, also favor the production of Aβ42/Aβ43 in both cell-based and cell-free systems. Fipronil administered orally to mice and rats is known to be metabolized rapidly, mostly to fipronil sulfone, which stably accumulates in adipose tissue and brain. In conclusion, several widely used pyrazole insecticides enhance the production of toxic, aggregation prone Aβ42/Aβ43 peptides, suggesting the possible existence of environmental “Alzheimerogens” which may contribute to the initiation and propagation of the amyloidogenic process in sporadic AD
- …