635 research outputs found
Synthesis And Characterization Of (pyNO−)2GaCl: A Redox-Active Gallium Complex
We report the synthesis of a gallium complex incorporating redox-active pyridyl nitroxide ligands. The (pyNO−)2GaCl complex was prepared in 85% yield via a salt metathesis route and was characterized by 1H and 13C NMR spectroscopies, X-ray diffraction, and theory. UV–Vis absorption spectroscopy and electrochemistry were used to access the optical and electrochemical properties of the complex, respectively. Our discussion focuses primarily on a comparison of the gallium complex to the corresponding aluminum derivative and shows that although the complexes are very similar, small differences in the electronic structure of the complexes can be correlated to the identity of the metal
Multiplierz: An Extensible API Based Desktop Environment for Proteomics Data Analysis
BACKGROUND. Efficient analysis of results from mass spectrometry-based proteomics experiments requires access to disparate data types, including native mass spectrometry files, output from algorithms that assign peptide sequence to MS/MS spectra, and annotation for proteins and pathways from various database sources. Moreover, proteomics technologies and experimental methods are not yet standardized; hence a high degree of flexibility is necessary for efficient support of high- and low-throughput data analytic tasks. Development of a desktop environment that is sufficiently robust for deployment in data analytic pipelines, and simultaneously supports customization for programmers and non-programmers alike, has proven to be a significant challenge. RESULTS. We describe multiplierz, a flexible and open-source desktop environment for comprehensive proteomics data analysis. We use this framework to expose a prototype version of our recently proposed common API (mzAPI) designed for direct access to proprietary mass spectrometry files. In addition to routine data analytic tasks, multiplierz supports generation of information rich, portable spreadsheet-based reports. Moreover, multiplierz is designed around a "zero infrastructure" philosophy, meaning that it can be deployed by end users with little or no system administration support. Finally, access to multiplierz functionality is provided via high-level Python scripts, resulting in a fully extensible data analytic environment for rapid development of custom algorithms and deployment of high-throughput data pipelines. CONCLUSION. Collectively, mzAPI and multiplierz facilitate a wide range of data analysis tasks, spanning technology development to biological annotation, for mass spectrometry-based proteomics research.Dana-Farber Cancer Institute; National Human Genome Research Institute (P50HG004233); National Science Foundation Integrative Graduate Education and Research Traineeship grant (DGE-0654108
Internal versus external determinants of Schistosoma japonicum transmission in irrigated agricultural villages
Currently schistosomiasis transmission has been suppressed to low levels in many historically endemic areas of China by widespread use of praziquantel in human and bovine populations and application of niclosamide for snail control. However, re-emergent transmission has signalled the need for sustainable interventions beyond these repeated chemical interventions. To take advantage of ongoing investment in rural infrastructure, an index of schistosomiasis transmission potential is needed to identify villages where environmental modifications would be particularly effective. Based on a retrospective analysis of data from 10 villages in Sichuan Province, an index linked to the basic reproductive number is shown to have promise in meeting this need. However, a lack of methods for estimating the spatial components of the proposed metric and for estimating the import of cercariae and miracidia from neighbouring villages leads to significant uncertainty in its estimation. These findings suggest a priority effort to develop methods for measuring the free-swimming forms of the parasite in surface waters. This need is underscored by the high cost and limited sensitivity of current methods for diagnosing human infection and mounting evidence of the inadequacy of snail surveys to identify environments supporting low levels of transmission
Microscope and microâ camera assessment of Schneiderian membrane perforation via transcrestal sinus floor elevation: A randomized ex vivo study
ObjectiveWe sought to assess the effectiveness of using a microscope and nonâ invasive camera for assessing sinus membrane perforations during transcrestal sinus floor elevation (TSFE).Materials and methodsFive fresh human cadaver heads corresponding to eight maxillary sinuses (six bilateral and two unilateral) underwent 4 TSFEs per sinus (a total of 32 single site elevations). Each elevation was randomly assigned to receive a three or six mm membrane elevation height (MEH). A microscope and microâ camera were used to assess the sinus membrane perforation. Afterwards, radiological and clinical membrane perforation assessments were performed. The statistical analysis results are expressed using the means, standard deviations, range values of the residual ridge height (RRH), residual ridge width (RRW), sinus membrane thickness (SMT) and incidence of perforation (IoP). Generalized linear methods were used to test for the correlation of RRH and MEH to the microscope and microâ camera perforation assessments and the correlation of microscope and microâ camera assessments with the postâ operative CBCT and crestal liquid evaluation.ResultsThe cumulative percentage of IoP was 40.62%, (23.07% with 3 mm MEH, and 76.92% with 6 mm MEH, p < 0.05). The perforation assessed using either the microscope or microâ camera coincided with the postâ operative CBCT and crestal liquid assessment in 87.55% sites. No significant correlation was found between the microscope or microâ camera assessments with RRH or MEH.ConclusionApplication of a microscope and microâ camera during transcrestal sinus floor elevation may allow the detection of the integrity of the Schneiderian membrane with greater than 85% accuracy in this ex vivo model.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/149727/1/clr13453.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/149727/2/clr13453_am.pd
Students as co-creators of teaching approaches, course design and curricula: implications for academic developers
Within higher education, students’ voices are frequently overlooked in the design of teaching approaches, courses and curricula. In this paper we outline the theoretical background to arguments for including students as partners in pedagogical planning processes. We present examples where students have worked collaboratively in design processes along with the beneficial outcomes of these examples. Finally we focus on some of the implications and opportunities for academic developers of proposing collaborative approaches to pedagogical planning
Vibrational Spectra of a Mechanosensitive Channel
We report the simulated vibrational spectra of a mechanosensitive membrane channel in different gating states. Our results show that while linear absorption is insensitive to structural differences, linear dichroism and sum-frequency generation spectroscopies are sensitive to the orientation of the transmembrane helices, which is changing during the opening process. Linear dichroism cannot distinguish an intermediate structure from the closed structure, but sum-frequency generation can. In addition, we find that two-dimensional infrared spectroscopy can be used to distinguish all three investigated gating states of the mechanosensitive membrane channel.
Recommended from our members
Complexity-Based Measures Inform Effects of Tai Chi Training on Standing Postural Control: Cross-Sectional and Randomized Trial Studies
Background: Diminished control of standing balance, traditionally indicated by greater postural sway magnitude and speed, is associated with falls in older adults. Tai Chi (TC) is a multisystem intervention that reduces fall risk, yet its impact on sway measures vary considerably. We hypothesized that TC improves the integrated function of multiple control systems influencing balance, quantifiable by the multi-scale “complexity” of postural sway fluctuations. Objectives: To evaluate both traditional and complexity-based measures of sway to characterize the short- and potential long-term effects of TC training on postural control and the relationships between sway measures and physical function in healthy older adults. Methods: A cross-sectional comparison of standing postural sway in healthy TC-naïve and TC-expert (24.5±12 yrs experience) adults. TC-naïve participants then completed a 6-month, two-arm, wait-list randomized clinical trial of TC training. Postural sway was assessed before and after the training during standing on a force-plate with eyes-open (EO) and eyes-closed (EC). Anterior-posterior (AP) and medio-lateral (ML) sway speed, magnitude, and complexity (quantified by multiscale entropy) were calculated. Single-legged standing time and Timed-Up–and-Go tests characterized physical function. Results: At baseline, compared to TC-naïve adults (n = 60, age 64.5±7.5 yrs), TC-experts (n = 27, age 62.8±7.5 yrs) exhibited greater complexity of sway in the AP EC (P = 0.023), ML EO (P<0.001), and ML EC (P<0.001) conditions. Traditional measures of sway speed and magnitude were not significantly lower among TC-experts. Intention-to-treat analyses indicated no significant effects of short-term TC training; however, increases in AP EC and ML EC complexity amongst those randomized to TC were positively correlated with practice hours (P = 0.044, P = 0.018). Long- and short-term TC training were positively associated with physical function. Conclusion: Multiscale entropy offers a complementary approach to traditional COP measures for characterizing sway during quiet standing, and may be more sensitive to the effects of TC in healthy adults. Trial Registration ClinicalTrials.gov NCT0134036
- …