32 research outputs found

    Micromechanical finite element modelling of thermo-mechanical fatigue for P91 steels

    Get PDF
    In this paper, the cyclic plasticity and fatigue crack initiation behaviour of a tempered martensite ferritic steel under thermo-mechanical fatigue conditions is examined by means of micromechanical finite element modelling. The crystal plasticity-based model explicitly reflects the microstructure of the material, measured by electronic backscatter diffraction. The predicted cyclic thermo-mechanical response agrees well with experiments under both in-phase and out-of-phase conditions. A thermo-mechanical fatigue indicator parameter, with stress triaxiality and temperature taken into account, is developed to predict fatigue crack initiation. In the fatigue crack initiation simulation, the out-of-phase thermo-mechanical response is identified to be more dangerous than in-phase response, which is consistent with experimental failure data. It is shown that the behaviour of thermo-mechanical fatigue can be effectively predicted at the microstructural level and this can lead to a more accurate assessment procedure for power plant components

    A multi-scale crystal plasticity model for cyclic plasticity and low-cycle fatigue in a precipitate-strengthened steel at elevated temperature

    Get PDF
    peer-reviewedIn this paper, a multi-scale crystal plasticity model is presented for cyclic plasticity and low-cycle fatigue in a tempered martensite ferritic steel at elevated temperature. The model explicitly represents the geometry of grains, sub-grains and precipitates in the material, with strain gradient effects and kinematic hardening included in the crystal plasticity formulation. With the multiscale model, the cyclic behaviour at the sub-grain level is predicted with the effect of lath and precipitate sizes examined. A crystallographic, accumulated slip (strain) parameter, modulated by triaxiality, is implemented at the micro scale, to predict crack initiation in precipitate-strengthened laths. The predicted numbers of cycles to crack initiation agree well with experimental data. A strong dependence on the precipitate size is demonstrated, indicating a detrimental effect of coarsening of precipitates on fatigue at elevated temperature. (C) 2016 Elsevier Ltd. All rights reserved.ACCEPTEDpeer-reviewe

    Experimental and micro-mechanical investigation of dynamic recrystallisation in a model two-phase material

    No full text
    SIGLEAvailable from British Library Document Supply Centre-DSC:D206586 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    A novel low-modulus titanium alloy for biomedical applications: A comparison between selective laser melting and metal injection moulding

    No full text
    The mechanical properties of new low-modulus beta titanium alloyed designed for biomedical applications are measured and compared when processed via the selective laser melting (SLM) and the metal injection moulding (MIM) processes. Mechanical tensile testing reveals important differences between them: (i) Under optimal laser settings, SLM produces strong, low-modulus and ductile properties. This is associated with the laser creating fully dense material with appropriate microstructure after solidification. (ii) MIM can produce materials with similar strength/stiffness ratios, but with reduced ductility. The differences between the processes are linked to changes in chemistry in the microstructure: carbon pickup from MIM binder and slow cooling rate is responsible for the appearance of Ti2C resulting in low ductility and very high strength together with a transition from intergranular to transgranular fracture
    corecore