4 research outputs found

    Parental trophic exposure to three aromatic fractions of polycyclic aromatic hydrocarbons in the zebrafish: Consequences for the offspring

    No full text
    International audienceIn recent decades, PAH emissions due to extensive anthropogenic activities have risen sharply causing considerable pollution of aquatic ecosystems. This pollution represents a threat for organisms, among them fish. Consequently, prenatal stress can have important repercussions, and may impact survival and population recruitment. To investigate this point, eggs were collected from zebrafish exposed during 6 months by trophic route to three aromatic fractions from two different origins, pyrolytic (PY) and petrogenic (light (BAL) and heavy (HFO) fractions) sources. Chronic dietary exposure of the parents were performed at environmentally relevant concentrations (0.3X, 1X and 3X; 1X represents an environmental concentration measured in French estuary). In order to explore the consequences of parental exposure for the next first generation, toxic responses were studied in both embryos and larvae using a multiscale approach. Toxic effects were assessed by looking at hatching success, developmental abnormalities, photomotor response and heartbeat. The level of PAH metabolites and EROD activity in fish larvae were measured to assess exposure to PAHs. Egg production of parents was significantly reduced compared to the Control; hence little information was available for BAL and HFO offspring. The size of larvae from PY parents was found to increase despite a reduced yolk sac compared to Control larvae. Furthermore, a high level of behavioral stress was observed in larvae originating from parents exposed to three-fold the environmental concentration. The cardiac activity was reduced in a concentration-dependent manner for the PY exposure group. No effect was however observed on biotransformation markers (cyp1a, EROD), nor on the level of DNA damage for all PY, BAL and HFO offspring. The absence of significant differences in metabolite levels may indicate a potential early depuration of transferred compounds or no PAH-transmission. The disruptions observed at the individual level in the next generation could impact on the longer-term, surviving population

    Fish Reproduction Is Disrupted upon Lifelong Exposure to Environmental PAHs Fractions Revealing Different Modes of Action

    Get PDF
    Polycyclic aromatic hydrocarbons (PAHs) constitute a large family of organic pollutants emitted in the environment as complex mixtures, the compositions of which depend on origin. Among a wide range of physiological defects, PAHs are suspected to be involved in disruption of reproduction. In an aquatic environment, the trophic route is an important source of chronic exposure to PAHs. Here, we performed trophic exposure of zebrafish to three fractions of different origin, one pyrolytic and two petrogenic. Produced diets contained PAHs at environmental concentrations. Reproductive traits were analyzed at individual, tissue and molecular levels. Reproductive success and cumulative eggs number were disrupted after exposure to all three fractions, albeit to various extents depending on the fraction and concentrations. Histological analyses revealed ovary maturation defects after exposure to all three fractions as well as degeneration after exposure to a pyrolytic fraction. In testis, hypoplasia was observed after exposure to petrogenic fractions. Genes expression analysis in gonads has allowed us to establish common pathways such as endocrine disruption or differentiation/maturation defects. Taken altogether, these results indicate that PAHs can indeed disrupt fish reproduction and that different fractions trigger different pathways resulting in different effects

    Exposures of zebrafish through diet to three environmentally relevant mixtures of PAHs produce behavioral disruptions in unexposed F1 and F2 descendant

    Get PDF
    The release of polycyclic aromatic hydrocarbons (PAHs) into the environment has increased very substantially over the last decades. PAHs are hydrophobic molecules which can accumulate in high concentrations in sediments acting then as major secondary sources. Fish contamination can occur through contact or residence nearby sediments or though dietary exposure. In this study, we analyzed certain physiological traits in unexposed fish (F1) issued from parents (F0) exposed through diet to three PAH mixtures at similar and environmentally relevant concentrations but differing in their compositions. For each mixture, no morphological differences were observed between concentrations. An increase in locomotor activity was observed in larvae issued from fish exposed to the highest concentration of a pyrolytic (PY) mixture. On the contrary, a decrease in locomotor activity was observed in larvae issued from heavy oil mixture (HO). In the case of the third mixture, light oil (LO), a reduction of the diurnal activity was observed during the setup of larval activity. Behavioral disruptions persisted in F1-PY juveniles and in their offspring (F2). Endocrine disruption was analyzed using cyp19a1b:GFP transgenic line and revealed disruptions in PY and LO offspring. Since no PAH metabolites were dosed in larvae, these findings suggest possible underlying mechanisms such as altered parental signaling molecule and/or hormone transferred in the gametes, eventually leading to early imprinting. Taken together, these results indicate that physiological disruptions are observed in offspring of fish exposed to PAH mixtures through diet
    corecore