78 research outputs found

    An ecohydrological journey of 4500 years reveals a stable but threatened precipitation–groundwater recharge relation around Jerusalem

    Get PDF
    Groundwater is a key water resource in semiarid and seasonally dry regions around the world, which is replenished by intermittent precipitation events and mediated by vegetation, soil, and regolith properties. Here, a climate reconstruction of 4500 years for the Jerusalem region was used to determine the relation between climate, vegetation, and groundwater recharge. Despite changes in air temperature and vegetation characteristics, simulated recharge remained linearly related to precipitation over the entire analyzed period, with drier decades having lower rates of recharge for a given annual precipitation due to soil memory effects. We show that in recent decades, the lack of changes in the precipitation–groundwater recharge relation results from the compensating responses of vegetation to increasing CO(2), i.e., increased leaf area and reduced stomatal conductance. This multicentury relation is expected to be modified by climate change, with changes up to −20% in recharge for unchanged precipitation, potentially jeopardizing water resource availability

    Matching ecohydrological processes and scales of banded vegetation patterns in semi-arid catchments

    No full text
    While the claim that water-carbon interactions result in spatially coherent vegetation patterning is rarely disputed in many arid and semi-arid regions, the significance of the detailed water pathways and other high frequency variability remain an open question. How the short temporal scale meteorological fluctuations form the long term spatial variability of available soil water in complex terrains due to the various hydrological, land surface and vegetation dynamic feedbacks, frames the scope of the work here. Knowledge of the detailed mechanistic feedbacks between soil, plants and the atmosphere will lead to advances in our understanding of plant water availability in arid and semi-arid ecosystems and will provide insights for future model development concerning vegetation pattern formation. In this study, quantitative estimates of water fluxes and vegetation productivity are provided for a semi-arid ecosystem with established vegetation bands on hillslopes using numerical simulations. A state-of-the-science process based ecohydrological model is used, which resolves hydrological and plant physiological processes at the relevant space and time scales, for relatively small periods (e.g. decades) of mature ecosystems (i.e. spatially static vegetation distribution). To unfold the mechanisms that shape the spatial distribution of soil moisture, plant productivity and the relevant surface/subsurface and atmospheric water fluxes, idealized hillslope numerical experiments are constructed, where the effects of soil-type, slope steepness and overland flow accumulation area are quantified. Those mechanisms are also simulated in the presence of complex topography features on landscapes. The main results are: (a) Short temporal scale meteorological variability and accurate representation of the scales at which each ecohydrological process operates are crucial for the estimation of the spatial variability of soil water availability to the plant root zone; (b) Water fluxes such as evapotranspiration, infiltration, runoff-runon and subsurface soil water movement have a dynamic short temporal scale behavior that determines the long term spatial organization of plant soil water availability in ecosystems with established vegetation patterns; (c) Hypotheses concerning the hydrological responses that can lead to vegetation pattern formation have to accommodate realistic and physically based representations of the fast dynamics of key ecohydrological fluxes

    Ecohydrological changes after tropical forest conversion to oil palm

    Get PDF
    Given their ability to provide food, raw material and alleviate poverty, oil palm (OP) plantations are driving significant losses of biodiversity-rich tropical forests, fuelling a heated debate on ecosystem degradation and conservation. However, while OP-induced carbon emissions and biodiversity losses have received significant attention, OP water requirements have been marginalized and little is known on the ecohydrological changes (water and surface energy fluxes) occurring from forest clearing to plantation maturity. Numerical simulations supported by field observations from seven sites in Southeast Asia (five OP plantations and two tropical forests) are used here to illustrate the temporal evolution of OP actual evapotranspiration (ET), infiltration/runoff, gross primary productivity (GPP) and surface temperature as well as their changes relative to tropical forests. Model results from large-scale commercial plantations show that young OP plantations decrease ecosystem ET, causing hotter and drier climatic conditions, but mature plantations (age > 8−9 yr) have higher GPP and transpire more water (up to +7.7%) than the forests they have replaced. This is the result of physiological constraints on water use efficiency and the extremely high yield of OP (six to ten times higher than other oil crops). Hence, the land use efficiency of mature OP, i.e. the high productivity per unit of land area, comes at the expense of water consumption in a trade of water for carbon that may jeopardize local water resources. Sequential replanting and herbaceous ground cover can reduce the severity of such ecohydrological changes and support local water/climate regulation.This study was supported by the Swiss National Science Foundation grant no. 152019 (r4d - Ecosystems) ‘Oil Palm Adaptive Landscapes’. AM and AK were supported by the Deutsche Forschungsgemeinschaft (DFG) in the framework of the collaborative German- Indonesian research project CRC990 - EFForTS. The authors confirm that they have no interest or relationship, financial, or otherwise that might be perceived as influencing objectivity with respect to this work

    An analytical approximation of urban heat and dry islands and their impact on convection triggering

    Get PDF
    It is well known that cities increase air and surface temperatures compared to their rural surroundings, the so-called urban heat island (UHI) effect. However, the associated changes in atmospheric humidity (also known as urban dry island, UDI) and convection triggering remain largely unexplored and it is still unclear how urban modifications of the surface energy budget influence the diurnal evolution of temperature and humidity in the Atmospheric Boundary Layer (ABL) and ultimately control the initiation of convective clouds. Here we quantify the impact of different urban settings and free atmospheric conditions on UHI, UDI, and convection triggers by means of a zero-order model of the ABL. Specifically, we derive an approximate solution for urban-rural changes in surface energy fluxes and ABL potential temperature and humidity and we investigate the crossing between the ABL height and the lifting condensation level (LCL) which is a proxy for the triggering of convective clouds. We show that urban areas are generally warmer and drier, thus causing an increase in both ABL and LCL heights. However, the response of the ABL-LCL crossing to surface conditions is non-linear and there exists a range of free atmosphere conditions for which changes in imperviousness can impact convective clouds

    Economic valuation of temperature-related mortality attributed to urban heat islands in European cities

    Get PDF
    As the climate warms, increasing heat-related health risks are expected, and can be exacerbated by the urban heat island (UHI) effect. UHIs can also offer protection against cold weather, but a clear quantification of their impacts on human health across diverse cities and seasons is still being explored. Here we provide a 500 m resolution assessment of mortality risks associated with UHIs for 85 European cities in 2015-2017. Acute impacts are found during heat extremes, with a 45% median increase in mortality risk associated with UHI, compared to a 7% decrease during cold extremes. However, protracted cold seasons result in greater integrated protective effects. On average, UHI-induced heat-/cold-related mortality is associated with economic impacts of €192/€ − 314 per adult urban inhabitant per year in Europe, comparable to air pollution and transit costs. These findings urge strategies aimed at designing healthier cities to consider the seasonality of UHI impacts, and to account for social costs, their controlling factors, and intra-urban variability

    An urban ecohydrological model to quantify the effect of vegetation on urban climate and hydrology (UT&C v1.0)

    Get PDF
    Increasing urbanization is likely to intensify the urban heat island effect, decrease outdoor thermal comfort and enhance runoff generation in cities. Urban green spaces are often proposed as a mitigation strategy to counteract these adverse effects and many recent developments of urban climate models focus on the inclusion of green and blue infrastructure to inform urban planning. However, many models still lack the ability to account for different plant types and oversimplify the interactions between the built environment, vegetation, and hydrology. In this study, we present an urban ecohydrological model, Urban Tethys-Chloris (UT&C), that combines principles of ecosystem modelling with an urban canopy scheme accounting for the biophysical and ecophysiological characteristics of roof vegetation, ground vegetation and urban trees. UT&C is a fully coupled energy and water balance model that calculates 2 m air temperature, 2 m humidity, and surface temperatures based on the infinite urban canyon approach. It further calculates all urban hydrological fluxes, including transpiration as a function of plant photosynthesis. Hence, UT&C accounts for the effects of different plant types on the urban climate and hydrology, as well as the effects of the urban environment on plant well-being and performance. UT&C performs well when compared against energy flux measurements of eddy covariance towers located in three cities in different climates (Singapore, Melbourne, Phoenix). A sensitivity analysis, performed as a proof of concept for the city of Singapore, shows a mean decrease in 2 m air temperature of 1.1 °C for fully grass covered ground, 0.2 °C for high values of leaf area index (LAI), and 0.3 °C for high values of Vc,max (an expression of photosynthetic activity). These reductions in temperature were combined with a simultaneous increase in relative humidity by 6.5 %, 2.1 %, and 1.6 %, for fully grass covered ground, high values of LAI, and high values of Vc,max, respectively. Furthermore, the increase of pervious vegetated ground is able to significantly reduce surface runoff. These results show that urban greening can lead to a decrease in urban air temperature and surface runoff, but this effect is limited in cities characterized by a hot, humid climate.ISSN:1991-962XISSN:1991-961
    corecore