371 research outputs found

    Moving toward a framework to compose intelligent web services

    Get PDF
    A framework for contract-based support to establish virtual collaboration is proposed using loosely coupled and heterogeneous intelligent Web services. A business process redesign scenario is also discussed for integrating shared business process between a PC manufacturer and a semiconductor manufacturer. Contracts encapsulate the control information for intelligent Web services (IWS) engaged in e-business transactions. IWS show promise as a means of supporting cross-organizational business transactions

    Validation of a new prognostic model to easily predict outcome in renal cell carcinoma: The GRANT score applied to the ASSURE trial population

    Get PDF
    Background: Prognostic scores have been developed to estimate the risk of recurrence and the probability of survival after nephrectomy for renal cell carcinoma (RCC). The use of these tools, despite being helpful to plan a customized schedule of follow-up, to the patient's tailored counselling and to select individuals who could potentially benefit from adjuvant treatment, currently is not routine, due to their relative complexity and to the lack of histological data (i.e. necrosis).Patients and methods: We developed a simple score called GRade, Age, Nodes and Tumor (GRANT) based on four easily obtained parameters: Fuhrman grade, age, pathological nodal status and pathological tumor size. Patients with 0 or 1 factor are classified as favorable risk, whereas patients with two or more risk factors as unfavorable risk. The large population of RCC patients from the ASSURE adjuvant trial was used as independent dataset for this external validation, to investigate the prognostic value of the new score in terms of disease-free survival and overall survival and to evaluate its possible application as predictive tool. Statistical analyses were carried out by the Department of Biostatistics & Computational Biology, Dana-Farber Cancer Institute (Boston, USA) for the ASSURE trial patients' population.Results: The performance of the new model is similar to that of the already validated score systems, but its strength, compared with the others already available, is the ease and clarity of its calculation, with great speed of use during the clinical practice. Limitations are the use of the Fuhrman nuclear grade, not valid for rare histologies, and the TNM classification modifications over time.Conclusion: The GRANT score demonstrated its potential usefulness for clinical practice

    Essential role of Plasmodium perforin-like protein 4 in ookinete midgut passage.

    Get PDF
    Pore forming proteins such as those belonging to the membrane attack/perforin (MACPF) family have important functions in many organisms. Of the five MACPF proteins found in Plasmodium parasites, three have functions in cell passage and one in host cell egress. Here we report an analysis of the perforin-like protein 4, PPLP4, in the rodent parasite Plasmodium berghei. We found that the protein is expressed only in the ookinete, the invasive stage of the parasite formed in the mosquito midgut. Transcriptional analysis revealed that expression of the pplp4 gene commences during ookinete development. The protein was detected in retorts and mature ookinetes. Using two antibodies, the protein was found localized in a dotted pattern, and 3-D SIM super-resolution microcopy revealed the protein in the periphery of the cell. Analysis of a C-terminal mCherry fusion of the protein however showed mainly cytoplasmic label. A pplp4 null mutant formed motile ookinetes, but these were unable to invade and traverse the midgut epithelium resulting in severely impaired oocyst formation and no transmission to naïve mice. However, when in vitro cultured ookinetes were injected into the thorax of the mosquito, thus by-passing midgut passage, sporozoites were formed and the mutant parasites were able to infect naïve mice. Taken together, our data show that PPLP4 is required only for ookinete invasion of the mosquito midgut. Thus PPLP4 has a similar role to the previously studied PPLP3 and PPLP5, raising the question why three proteins with MACPF domains are needed for invasion by the ookinete of the mosquito midgut epithelium

    The International Surface Pressure Databank version 2

    Get PDF
    The International Surface Pressure Databank (ISPD) is the world's largest collection of global surface and sea-level pressure observations. It was developed by extracting observations from established international archives, through international cooperation with data recovery facilitated by the Atmospheric Circulation Reconstructions over the Earth (ACRE) initiative, and directly by contributing universities, organizations, and countries. The dataset period is currently 1768–2012 and consists of three data components: observations from land stations, marine observing systems, and tropical cyclone best track pressure reports. Version 2 of the ISPD (ISPDv2) was created to be observational input for the Twentieth Century Reanalysis Project (20CR) and contains the quality control and assimilation feedback metadata from the 20CR. Since then, it has been used for various general climate and weather studies, and an updated version 3 (ISPDv3) has been used in the ERA-20C reanalysis in connection with the European Reanalysis of Global Climate Observations project (ERA-CLIM). The focus of this paper is on the ISPDv2 and the inclusion of the 20CR feedback metadata. The Research Data Archive at the National Center for Atmospheric Research provides data collection and access for the ISPDv2, and will provide access to future versions

    Control de calidad y proceso de homogeneización de series térmicas catalanas

    Get PDF
    Ponencia presentada en: I Congreso de la Asociación Española de Climatología “La climatología española en los albores del siglo XXI”, celebrado en Barcelona del 1 al 3 de diciembre de 1999.[ES]La falta de homogeneidad de las series climáticas dificulta la detección y caracterización del cambio climático a diferentes escalas espaciales, por lo que previamente a su utilización con esta finalidad, deben ser sometidas a un proceso riguroso de control de calidad y de homogeneización. En esta comunicación se aborda la aplicación de la prueba SNHT de Alexandersson y Moberg (1997) a los registros de la temperatura del aire de la región catalana. La finalidad de esta aplicación es obtener una base de datos térmicos homogeneizados.[EN]Lack of homogeneity in climatic data series is an obstacle to detecting and characterising climatic change in different space scales; especially if inhomogeneities and actual change are expected to be figures of the same order of magnitude. Hence, before data can be used to determine the existence of this climatic change and its magnitude, a rigorous process of quality control and homogenization must be followed. In this communication, Alexandersson and Moberg’s test (SNHT) is used, with some modifications, with the object of obtaining a set of adjusted data for Catalonia.Este trabajo ha sido financiado por CICYT, Proyecto de Investigación de I+D CLI96-1842-C05-01

    New WMO certified megaflash lightning extremes for flash distance (768 km) and duration (17.01 seconds) recorded from space

    Get PDF
    Initial global extremes in lightning duration and horizontal distance were established in 2017 (Lang et al. 2017) by an international panel of atmospheric lightning scientists and engineers assembled by the WMO. The subsequent launch of NOAA’s latest GOES-16/17 satellites with their Geostationary Lightning Mappers (GLMs) enabled extreme lightning to be monitored continuously over the western hemisphere up to 55° latitude for the first time. As a result, the former lightning extremes were more than doubled in 2019 to 709 km for distance and 16.730 s for duration (Peterson et al. 2020). Continued detection and analysis of lightning “megaflashes” (Sequin, 2021) has now revealed two flashes that even exceed those 2019 records. As part of the ongoing work of the WMO in detection and documentation of global weather extremes (e.g., El Fadli et al. 2013; Merlone et al. 2010), an international WMO evaluation committee was created to critically adjudicate these two GLM megaflash cases as new records for extreme lightning.We thank S. A. Rutledge and two other reviewers for their valuable comments. M. J. Peterson was supported by the U.S. Department of Energy through the Los Alamos National Laboratory (LANL) Laboratory Directed Research and Development (LDRD) program under project number 20200529ECR. Los Alamos National Laboratory is operated by Triad National Security, LLC, for the National Nuclear Security Administration of U.S. Department of Energy (Contract 89233218CNA000001). T. Logan supported by a NOAA Grant NA16OAR4320115 “Lightning Mapper Array Operation in Oklahoma and the Texas Gulf Coast Region to Aid Preparation for the GOES-R GLM.” I. Kolmasova was supported by GACR Grant 20-09671. S. D. Zhang was supported by a NOAA Grant NNH19ZDA001N-ESROGSS. The participation of J. Montanya in this work is supported by research Grant ESP2017-86263-C4-2-R funded by MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe,” by the “European Union”; and Grants PID2019-109269RB-C42 funded by MCIN/AEI/10.13039/501100011033.Peer ReviewedPostprint (author's final draft

    A roadmap to climate data rescue services

    Get PDF
    Quantitative approaches to climate risk management such as mapping or impact modelling rely on past meteorological data with daily or sub‐daily resolution, a large fraction of which have not yet been digitized. Over the last decade or so, a number of projects have contributed to the rescue of some of these data. Here we provide a summary of a survey we have undertaken of several meteorological and climate data rescue projects, in order to identify the needs of climate data rescue services. To make these efforts more sustainable, additional integrated activities are needed. We argue that meteorological and climate data rescue must be seen as a continuous, coordinated long‐term effort. Technical developments (e.g. data assimilation), new scientific questions (e.g. process understanding of extreme events) and new social (e.g. risk assessment, health) or economic (e.g. new renewable energy sources, agriculture and forestry, tourism, infrastructure, etc.) services are highlighting the immense value of data previously neglected or never considered. This continuous effort is currently undertaken by projects of various sizes, structure, funding and staffing, as well as by dedicated programmes, ranging from those within many national weather services down to “grassroots” initiatives. These activities are often not sufficiently coordinated, staffed, or funded at an international level and will benefit considerably from climate data rescue services being established within the Copernicus Climate Change Service (C3S) (https://climate.copernicus.eu/)

    Future extreme precipitation intensities based on a historic event

    Get PDF
    In a warmer climate, it is expected that precipitation intensities will increase, and form a considerable risk of high-impact precipitation extremes. This study applies three methods to transform a historic extreme precipitation event in the Netherlands to a similar event in a future warmer climate, thus compiling a future weather scenario. The first method uses an observation-based non-linear relation between the hourly-observed summer precipitation and the antecedent dew-point temperature (the Pi–Td relation). The second method simulates the same event by using the convective-permitting numerical weather model (NWP) model HARMONIE, for both present-day and future warmer conditions. The third method is similar to the first method, but applies a simple linear delta transformation to the historic data by using indicators from The Royal Netherlands Meteorological Institute (KNMI)'14 climate scenarios. A comparison of the three methods shows comparable intensity changes, ranging from below the Clausius–Clapeyron (CC) scaling to a 3 times CC increase per degree of warming. In the NWP model, the position of the events is somewhat different; due to small wind and convection changes, the intensity changes somewhat differ with time, but the total spatial area covered by heavy precipitation does not change with the temperature increase. The Pi–Td method is simple and time efficient compared to numerical models. The outcome can be used directly for hydrological and climatological studies and for impact analysis, such as flood-risk assessments.</p
    corecore