3 research outputs found

    Magnetic field estimates from the X-ray synchrotron emitting rims of the 30 Dor C superbubble and the implications for the nature of 30 Dor C's TeV emission

    Get PDF
    Context: The 30 Dor C superbubble is unique for its synchrotron X-ray shell, as well as being the first superbubble to be detected in TeV γ-rays, though which is the dominant TeV emission mechanism, leptonic or hadronic, is still unclear. Aims: We aim to use new Chandra observations of 30 Dor C to resolve the synchrotron shell in unprecedented detail and to estimate the magnetic (B) field in the postshock region, a key discriminator between TeV γ-ray emission mechanisms. Methods: We extracted radial profiles in the 1.5-8 keV range from various sectors around the synchrotron shell and fitted these with a projected and point spread function convolved postshock volumetric emissivity model to determine the filament widths. We then calculated the postshock magnetic field strength from these widths. Results: We find that most of the sectors were well fitted with our postshock model and the determined B-field values were low, all with best fits ≤20 μG. Upper limits on the confidence intervals of three sectors reached z 30 μG though these were poorly constrained. The generally low B-field values suggests a leptonic-dominated origin for the TeV γ-rays. Our postshock model did not provide adequate fits to two sectors. We find that one sector simply did not provide a clean enough radial profile, while the other could be fitted with a modified postshock model where the projected profile falls off abruptly below ∼0.8 times the shell radius, yielding a postshock B-field of 4.8 (3.7-11.8) μG which is again consistent with the leptonic TeV γ-ray mechanism. Alternatively, the observed profiles in these sectors could result from synchrotron enhancements around a shock-cloud interaction as suggested in previous works. Conclusions: The average postshock B-field determined around the X-ray synchrotron shell of 30 Dor C suggests the leptonic scenario as the dominant emission mechanism for the TeV γ-rays

    Unexpected circular radio objects at high Galactic latitude

    No full text
    We have found a class of circular radio objects in the Evolutionary Map of the Universe Pilot Survey, using the Australian Square Kilometre Array Pathfinder telescope. The objects appear in radio images as circular edge-brightened discs, about one arcmin diameter, that are unlike other objects previously reported in the literature. We explore several possible mechanisms that might cause these objects, but none seems to be a compelling explanation

    The ASKAP-EMU Early Science Project : radio continuum survey of the Small Magellanic Cloud

    No full text
    We present two new radio continuum images from the Australian Square Kilometre Array Pathfinder (ASKAP) survey in the direction of the Small Magellanic Cloud (SMC). These images are part of the Evolutionary Map of the Universe (EMU) Early Science Project (ESP) survey of the Small and Large Magellanic Clouds. The two new source lists produced from these images contain radio continuum sources observed at 960 MHz (4489 sources) and 1320 MHz (5954 sources) with a bandwidth of 192 MHz and beam sizes of 30.0”×30.0” and 16.3”×15.1”, respectively. The median Root Mean Squared (RMS) noise values are 186 μJy beam−1 (960 MHz) and 165 μJy beam−1 (1320 MHz). To create point source catalogues, we use these two source lists, together with the previously published Molonglo Observatory Synthesis Telescope (MOST) and the Australia Telescope Compact Array (ATCA) point source catalogues to estimate spectral indices for the whole population of radio point sources found in the survey region. Combining our ASKAP catalogues with these radio continuum surveys, we found 7736 point-like sources in common over an area of 30 deg2. In addition, we report the detection of two new, low surface brightness supernova remnant candidates in the SMC. The high sensitivity of the new ASKAP ESP survey also enabled us to detect the bright end of the SMC planetary nebula sample, with 22 out of 102 optically known planetary nebulae showing point-like radio continuum emission. Lastly, we present several morphologically interesting background radio galaxies
    corecore