12 research outputs found

    Ultra-Fast Relaxation, Decoherence and Localization of Photoexcited States in π\pi-Conjugated Polymers: A TEBD Study

    Full text link
    The exciton relaxation dynamics of photoexcited electronic states in poly(pp-phenylenevinylene) (PPV) are theoretically investigated within a coarse-grained model, in which both the exciton and nuclear degrees of freedom are treated quantum mechanically. The Frenkel-Holstein Hamiltonian is used to describe the strong exciton-phonon coupling present in the system, while external damping of the internal nuclear degrees of freedom are accounted for by a Lindblad master equation. Numerically, the dynamics are computed using the time evolving block decimation (TEBD) and quantum jump trajectory techniques. The values of the model parameters physically relevant to polymer systems naturally lead to a separation of time scales, with the ultra-fast dynamics corresponding to energy transfer from the exciton to the internal phonon modes (i.e., the C-C bond oscillations), while the longer time dynamics correspond to damping of these phonon modes by the external dissipation. Associated with these time scales, we investigate the following processes that are indicative of the system relaxing onto the emissive chromophores of the polymer: 1) Exciton-polaron formation occurs on an ultra-fast time scale, with the associated exciton-phonon correlations present within half a vibrational time period of the C-C bond oscillations. 2) Exciton decoherence is driven by the decay in the vibrational overlaps associated with exciton-polaron formation, occurring on the same time scale. 3) Exciton density localization is driven by the external dissipation, arising from `wavefunction collapse' occurring as a result of the system-environment interactions. Finally, we show how fluorescence anisotropy measurements can be used to investigate the exciton decoherence process during the relaxation dynamics.Comment: 16 pages, 15 figure

    Detailed balance in mixed quantum-classical mapping approaches

    Full text link
    The violation of detailed balance poses a serious problem for the majority of current quasiclassical methods for simulating nonadiabatic dynamics. In order to analyze the severity of the problem, we predict the long-time limits of the electronic populations according to various quasiclassical mapping approaches, by applying arguments from classical ergodic theory. Our analysis confirms that regions of the mapping space that correspond to negative populations, which most mapping approaches introduce in order to go beyond the Ehrenfest approximation, pose the most serious issue for reproducing the correct thermalization behaviour. This is because inverted potentials, which arise from negative electronic populations entering into the nuclear force, can result in trajectories unphysically accelerating off to infinity. The recently developed mapping approach to surface hopping (MASH) provides a simple way of avoiding inverted potentials, while retaining an accurate description of the dynamics. We prove that MASH, unlike any other quasiclassical approach, is guaranteed to describe the exact thermalization behaviour of all quantum\unicode{x2013}classical systems, confirming it as one of the most promising methods for simulating nonadiabatic dynamics in real condensed-phase systems

    Recovering Marcus Theory Rates and Beyond without the Need for Decoherence Corrections: The Mapping Approach to Surface Hopping

    Full text link
    It is well known that fewest-switches surface hopping (FSSH) fails to correctly capture the quadratic scaling of rate constants with diabatic coupling in the weak-coupling limit, as expected from Fermi's golden rule and Marcus theory. To address this deficiency, the most widely used approach is to introduce a `decoherence correction', which removes the inconsistency between the wavefunction coefficients and the active state. Here we investigate the behavior of a new nonadiabatic trajectory method, called the mapping approach to surface hopping (MASH), on systems that exhibit incoherent rate behavior. Unlike FSSH, MASH hops between active surfaces deterministically, and can never have an inconsistency between the wavefunction coefficients and the active state. We show that MASH is not only able to describe rates for intermediate and strong diabatic coupling, but can also accurately reproduce the results of Marcus theory in the golden-rule limit, without the need for a decoherence correction. MASH is therefore a significant improvement over FSSH in the simulation of nonadiabatic reactions

    Spin-Mapping Methods for Simulating Ultrafast Nonadiabatic Dynamics

    Get PDF
    Many chemical reactions exhibit nonadiabatic effects as a consequence of coupling between electronic states and/or interaction with light. While a fully quantum description of nonadiabatic reactions is unfeasible for most realistic molecules, a more computationally tractable approach is to combine a classical description of the nuclei with a quantum description of the electronic states. Combining the formalisms of quantum and classical dynamics is however a difficult problem for which standard methods (such as Ehrenfest dynamics and surface hopping) may be insufficient. In this article, we review a new trajectory-based approach developed in our group that is able to describe nonadiabatic dynamics with a higher accuracy than previous approaches but for a similar level of computational effort. This method treats the electronic states with a phase-space representation for discrete-level systems, which in the two-level case is analogous to a spin-½. We point out the key features of the method and demonstrate its use in a variety of applications, including ultrafast transfer through conical intersections, damped coherent excitation under coupling to a strong light field, and nonlinear spectroscopy of light-harvesting complexes

    A partially linearized spin-mapping approach for simulating nonlinear optical spectra

    No full text
    We present a partially linearized method based on spin-mapping for computing both linear and nonlinear optical spectra. As observables are obtained from ensembles of classical trajectories, the approach can be applied to the large condensed-phase systems that undergo photosynthetic light-harvesting processes. In particular, the recently derived spin partially linearized density matrix method has been shown to exhibit superior accuracy in computing population dynamics compared to other related classical-trajectory methods. Such a method should also be ideally suited to describing the quantum coherences generated by interaction with light. We demonstrate that this is, indeed, the case by calculating the nonlinear optical response functions relevant for the pump–probe and 2D photon-echo spectra for a Frenkel biexciton model and the Fenna–Matthews–Olsen light-harvesting complex. One especially desirable feature of our approach is that the full spectrum can be decomposed into its constituent components associated with the various Liouville-space pathways, offering a greater insight beyond what can be directly obtained from experiments.ISSN:0021-9606ISSN:1089-769

    A mapping approach to surface hopping

    No full text
    We present a nonadiabatic classical-trajectory approach that offers the best of both worlds between fewest-switches surface hopping (FSSH) and quasiclassical mapping dynamics. This mapping approach to surface hopping (MASH) propagates the nuclei on the active adiabatic potential-energy surface, such as in FSSH. However, unlike in FSSH, transitions between active surfaces are deterministic and occur when the electronic mapping variables evolve between specified regions of the electronic phase space. This guarantees internal consistency between the active surface and the electronic degrees of freedom throughout the dynamics. MASH is rigorously derivable from exact quantum mechanics as a limit of the quantum–classical Liouville equation (QCLE), leading to a unique prescription for momentum rescaling and frustrated hops. Hence, a quantum-jump procedure can, in principle, be used to systematically converge the accuracy of the results to that of the QCLE. This jump procedure also provides a rigorous framework for deriving approximate decoherence corrections similar to those proposed for FSSH. We apply MASH to simulate the nonadiabatic dynamics in various model systems and show that it consistently produces more accurate results than FSSH at a comparable computational cost.ISSN:0021-9606ISSN:1089-769

    Detailed balance in mixed quantum–classical mapping approaches

    No full text
    The violation of detailed balance poses a serious problem for the majority of current quasiclassical methods for simulating nonadiabatic dynamics. In order to analyze the severity of the problem, we predict the long-time limits of the electronic populations according to various quasiclassical mapping approaches by applying arguments from classical ergodic theory. Our analysis confirms that regions of the mapping space that correspond to negative populations, which most mapping approaches introduce in order to go beyond the Ehrenfest approximation, pose the most serious issue for reproducing the correct thermalization behavior. This is because inverted potentials, which arise from negative electronic populations entering the nuclear force, can result in trajectories unphysically accelerating off to infinity. The recently developed mapping approach to surface hopping (MASH) provides a simple way of avoiding inverted potentials while retaining an accurate description of the dynamics. We prove that MASH, unlike any other quasiclassical approach, is guaranteed to describe the exact thermalization behavior of all quantum–classical systems, confirming it as one of the most promising methods for simulating nonadiabatic dynamics in real condensed phase systems.ISSN:0021-9606ISSN:1089-769

    Explaining the Efficiency of Photosynthesis: Quantum Uncertainty or Classical Vibrations?

    No full text
    Photosynthetic organisms are known to use a mechanism of vibrationally assisted exciton energy transfer to efficiently harvest energy from light. The importance of quantum effects in this mechanism is a long-standing topic of debate, which has traditionally focused on the role of excitonic coherences. Here, we address another recent claim: that the efficient energy transfer in the Fenna−Matthews−Olson complex relies on nuclear quantum uncertainty and would not function if the vibrations were classical. We present a counter example to this claim, showing by trajectory-based simulations that a description in terms of quantum electrons and classical nuclei is indeed sufficient to describe the funneling of energy to the reaction center. We analyze and compare these findings to previous classical-nuclear approximations that predicted the absence of an energy funnel and conclude that the key difference and the reason for the discrepancy is the ability of the trajectories to properly account for Newton’s third law.ISSN:1948-718
    corecore