9,766 research outputs found

    Scaling and Universality in the Counterion-Condensation Transition at Charged Cylinders

    Full text link
    We address the critical and universal aspects of counterion-condensation transition at a single charged cylinder in both two and three spatial dimensions using numerical and analytical methods. By introducing a novel Monte-Carlo sampling method in logarithmic radial scale, we are able to numerically simulate the critical limit of infinite system size (corresponding to infinite-dilution limit) within tractable equilibration times. The critical exponents are determined for the inverse moments of the counterionic density profile (which play the role of the order parameters and represent the inverse localization length of counterions) both within mean-field theory and within Monte-Carlo simulations. In three dimensions (3D), correlation effects (neglected within mean-field theory) lead to an excessive accumulation of counterions near the charged cylinder below the critical temperature (condensation phase), while surprisingly, the critical region exhibits universal critical exponents in accord with the mean-field theory. In two dimensions (2D), we demonstrate, using both numerical and analytical approaches, that the mean-field theory becomes exact at all temperatures (Manning parameters), when number of counterions tends to infinity. For finite particle number, however, the 2D problem displays a series of peculiar singular points (with diverging heat capacity), which reflect successive de-localization events of individual counterions from the central cylinder. In both 2D and 3D, the heat capacity shows a universal jump at the critical point, and the energy develops a pronounced peak. The asymptotic behavior of the energy peak location is used to locate the critical temperature, which is also found to be universal and in accordance with the mean-field prediction.Comment: 31 pages, 16 figure

    Superfluid Friction and Late-time Thermal Evolution of Neutron Stars

    Get PDF
    The recent temperature measurements of the two older isolated neutron stars PSR 1929+10 and PSR 0950+08 (ages of 3×1063\times 10^6 and 2×1072\times 10^7 yr, respectively) indicate that these objects are heated. A promising candidate heat source is friction between the neutron star crust and the superfluid it is thought to contain. We study the effects of superfluid friction on the long-term thermal and rotational evolution of a neutron star. Differential rotation velocities between the superfluid and the crust (averaged over the inner crust moment of inertia) of ωˉ0.6\bar\omega\sim 0.6 rad s1^{-1} for PSR 1929+10 and 0.02\sim 0.02 rad s1^{-1} for PSR 0950+08 would account for their observed temperatures. These differential velocities could be sustained by pinning of superfluid vortices to the inner crust lattice with strengths of \sim 1 MeV per nucleus. Pinned vortices can creep outward through thermal fluctuations or quantum tunneling. For thermally-activated creep, the coupling between the superfluid and crust is highly sensitive to temperature. If pinning maintains large differential rotation (10\sim 10 rad s1^{-1}), a feedback instability could occur in stars younger than 105\sim 10^5 yr causing oscillations of the temperature and spin-down rate over a period of 0.3tage\sim 0.3 t_{\rm age}. For stars older than 106\sim 10^6 yr, however, vortex creep occurs through quantum tunneling, and the creep velocity is too insensitive to temperature for a thermal-rotational instability to occur. These older stars could be heated through a steady process of superfluid friction.Comment: 26 pages, 1 figure, submitted to Ap

    CHEMICAL SIGNATURE OF GROUNDWATER IN COVER OVERLYING DULUTH COMPLEX NI-CU-PGE DEPOSITS, NE MINNESOTA

    Get PDF
    The U.S. Geological Survey initiated a project in 2015 aimed at evaluating geochemical exploration methods for covered deposits in the northern Midcontintent Rift, employing both site-scale studies and regional geochemical databases. A first group of groundwater samples was collected from unconsolidated material overlying the Spruce Road, Wyman Creek, and Skibo deposits in the Duluth Complex to determine effective sampling methods, characterize the groundwater chemical signature of these deposits, and determine chemical evolution along flow paths. Twenty-seven samples were collected from mini-piezometers at depths <5 m and analyzed for major and trace element chemistry and stable isotopes of water. Ten samples were also analyzed for groundwater age tracers, including noble gases, 3H, He isotopes, and chlorofluorocarbons. Site conditions presented challenges for deriving well-constrained specific ages. However, samples could be sorted into the following age categories by employing multiple tracers: <0.5 yr; 0.5 to 2 yr; 2 to 10 yr; and 15 to 30 yr. Cu and Ni concentrations over the deposits range from <0.5 to 150 μg/L and from <1 to 348 μg/L, respectively, and are commonly elevated above background. Cu and Ni are negatively correlated with pH (range of 5.7 to 8.6), probably due to progressively more adsorption on negatively charged mineral surfaces at higher pH. The pH also increases with groundwater age, likely due to weathering of abundant mafic minerals. As a result, Cu and Ni concentrations generally decrease with increasing age. These results suggest that pH provides an important limit on Cu and Ni mobility in the groundwater system, which must be taken into account in designing geochemical exploration approaches. In addition to site-scale work, a regional groundwater chemical database was compiled from available USGS (NWIS) and state databases. Initial examination reveals both geogenic and anthropogenic metal anomalies, and spatial analyses are ongoing

    A SQUAMOSA MADS-box gene involved in the regulation of anthocyanin accumulation in bilberry fruits

    Get PDF
    Anthocyanins are important health promoting phytochemicals that are abundant in many fleshy fruits. Bilberry (Vaccinium myrtillus L.) is one of the best sources of these compounds. Here we report on the expression pattern and functional analysis of a SQUAMOSA (SQUA) class MADS-box transcription factor, VmTDR4, associated with anthocyanin biosynthesis in bilberry. Levels of VmTDR4 expression were spatially and temporally linked with colour development and anthocyanin-related gene expression. Virus induced gene silencing (VIGS) was used to suppress VmTDR4 expression in bilberry resulting in substantial reduction in anthocyanin levels in fully ripe fruits. Chalcone synthase was used a positive control in the VIGS experiments. Additionally, in sectors of fruit tissue in which the expression of the VmTDR4 gene was silenced, the expression of R2R3 MYB family transcription factors related to the biosynthesis of flavonoids were also altered. We conclude that VmTDR4 plays an important role in the accumulation of anthocyanins during normal ripening in bilberry; probably through direct or indirect control of transcription factors belonging to the R2R3 MYB family

    Semirelativistic stability of N-boson systems bound by 1/r pair potentials

    Full text link
    We analyze a system of self-gravitating identical bosons by means of a semirelativistic Hamiltonian comprising the relativistic kinetic energies of the involved particles and added (instantaneous) Newtonian gravitational pair potentials. With the help of an improved lower bound to the bottom of the spectrum of this Hamiltonian, we are able to enlarge the known region for relativistic stability for such boson systems against gravitational collapse and to sharpen the predictions for their maximum stable mass.Comment: 11 pages, considerably enlarged introduction and motivation, remainder of the paper unchange

    Dietary supplement use and nosebleeds in hereditary haemorrhagic telangiectasia - an observational study.

    Get PDF
    Understanding potential provocations of haemorrhage is important in a range of clinical settings, and particularly for people with abnormal vasculature. Patients with hereditary haemorrhagic telangiectasia (HHT) can report haemorrhage from nasal telangiectasia in real time, and suggested dietary factors may precipitate nosebleeds. To examine further, nosebleed severity, dietary supplement use, and blood indices were evaluated in an unselected group of 50 HHT patients recruited from a specialist UK service. Using the validated Epistaxis Severity Score, nosebleed severity ranged from 0 to 9.1 out of 10 (median 3.9). Using a Food Frequency Questionnaire, 24/50 (48%) participants reported use of dietary supplements in the previous year. A third (18/50; 36%) had used self prescribed, non-iron containing dietary supplements, ingesting between 1 and 3 different supplements each day. Eight (16%) used fish oils. Despite having more severe epistaxis (p = 0.012), the 12 iron supplement users had higher serum iron concentrations, and were able to maintain their red blood cell indices. In contrast, there was no evident benefit for the participants using non iron supplements. Furthermore, platelet counts and serum fibrinogen tended to be lower in fish oil/supplement users, and one fish oil user demonstrated reduced in vitro platelet aggregation. In conclusion, in this small study, a third of HHT patients used non-iron dietary supplements, and one in six ingested fish oils, unaware of their known anti-platelet activity. The scale of use, and potential of these "natural health supplements" to exacerbate nosebleeds has not been appreciated previously in HHT

    In situ measurement of atmospheric krypton and xenon on Mars with Mars Science Laboratory

    Get PDF
    Mars Science Laboratory's Sample Analysis at Mars (SAM) investigation has measured all of the stable isotopes of the heavy noble gases krypton and xenon in the martian atmosphere, in situ, from the Curiosity Rover at Gale Crater, Mars. Previous knowledge of martian atmospheric krypton and xenon isotope ratios has been based upon a combination of the Viking mission's krypton and xenon detections and measurements of noble gas isotope ratios in martian meteorites. However, the meteorite measurements reveal an impure mixture of atmospheric, mantle, and spallation contributions. The xenon and krypton isotopic measurements reported here include the complete set of stable isotopes, unmeasured by Viking. The new results generally agree with Mars meteorite measurements but also provide a unique opportunity to identify various non-atmospheric heavy noble gas components in the meteorites. Kr isotopic measurements define a solar-like atmospheric composition, but deviating from the solar wind pattern at 80Kr and 82Kr in a manner consistent with contributions originating from neutron capture in Br. The Xe measurements suggest an intriguing possibility that isotopes lighter than 132Xe have been enriched to varying degrees by spallation and neutron capture products degassed to the atmosphere from the regolith, and a model is constructed to explore this possibility. Such a spallation component, however, is not apparent in atmospheric Xe trapped in the glassy phases of martian meteorites

    Transabdominal ultrasonographic evaluation of fetal well-being in the late-term mare and cow

    Get PDF
    In the equine practice, attempts have been made to examine the fetus in the second and third trimester of pregnancy but all of the available methods have limitations. Until now, transabdominal ultrasonography has been regarded as the most informative examination. This method allows us to measure fetal heart rate, fetal activity as well as the quality and quantity of the fetal fluids. A modified biophysical profile for horses was used by several researchers in the USA from the 1990s as a gold standard. However, it is not sensitive enough and, in the authors’ experience, professionals can face difficulties during its application (e.g. for measuring aortic diameter and fetal breathing movements). In cows, this method was first used for this purpose by a Canadian research group in 2007. They reported that transabdominal ultrasound was promising but showed low sensitivity in this species. The present studies show that birth weight cannot be predicted from fetal aortic diameter measurement in cows as suggested by other researchers. Transabdominal ultrasound needs special equipment (2–3.5 MHz convex transducer) and basic ultrasonographic knowledge; however, we suggest that in most cases it can be performed with the dam placed in a stock and without shaving the examination area. The method provides useful information within 30–40 minutes, enabling the examiner to determine whether or not the fetus is alive and to recognise placentitis or twins. This technique also allows measuring the combined thickness of the uteroplacental unit, and the authors’ ongoing study showed higher normal values in Lipizzaner mares compared to values in other breeds. In conclusion, with the help of advanced techniques, simple and low-cost methods should be developed for the evaluation of the pregnant dam and its fetus to assess fetal viability in the veterinary practice

    Dynamics of Counterion Condensation

    Full text link
    Using a generalization of the Poisson-Boltzmann equation, dynamics of counterion condensation is studied. For a single charged plate in the presence of counterions, it is shown that the approach to equilibrium is diffusive. In the far from equilibrium case of a moving charged plate, a dynamical counterion condensation transition occurs at a critical velocity. The complex dynamic behavior of the counterion cloud is shown to lead to a novel nonlinear force-velocity relation for the moving plate.Comment: 5 pages, 1 ps figure included using eps
    corecore