12,023 research outputs found

    Integral dose during constant velocity motion near a space power reactor

    Get PDF
    The dose rate in a rotationally-symmetric radiation field near a space power reactor is assumed to be inversely proportional to separation distance squared and directly proportional either to a constant or a constant times the sine-cubed of a polar angle. Constant velocity motion is examined in both cases in both two and three dimensional geometries. The two dimensional geometry occurs when the line of motion and the field axis of symmetry are co-planar. The dose integral in the sine-cubed region may be integrated directly, but a more useful form is obtained after a change of variable. A coordinate system rotation greatly simplifies the results. The three dimensional problem is integrated after a change of variable. Finally, tables of normalized functions are presented and discussed

    SNAP-8 post shutdown gamma radiation approximations

    Get PDF
    Detector responses were calculated for normalized sources in the Perkins and King energy group structure for a SNAP 8 power system on a NASA space station. Gamma decay rates were then calculated by using an expanded, updated list of isotopic decay data, and from these, actual detector responses were found for the SNAP 8 system. The results indicate that energy-dependent calculations must be made to determine decay gamma dose rates for actual reactor configurations. A simplified method for making these calculations has been devised

    Inter- and Intra-Chain Attractions in Solutions of Flexible Polyelectrolytes at Nonzero Concentration

    Full text link
    Constant temperature molecular dynamics simulations were used to study solutions of flexible polyelectrolyte chains at nonzero concentrations with explicit counterions and unscreened coulombic interactions. Counterion condensation, measured via the self-diffusion coefficient of the counterions, is found to increase with polymer concentration, but contrary to the prediction of Manning theory, the renormalized charge fraction on the chains decreases with increasing Bjerrum length without showing any saturation. Scaling analysis of the radius of gyration shows that the chains are extended at low polymer concentrations and small Bjerrum lengths, while at sufficiently large Bjerrum lengths, the chains shrink to produce compact structures with exponents smaller than a gaussian chain, suggesting the presence of attractive intrachain interactions. A careful study of the radial distribution function of the center-of-mass of the polyelectrolyte chains shows clear evidence that effective interchain attractive interactions also exist in solutions of flexible polyelectrolytes, similar to what has been found for rodlike polyelectrolytes. Our results suggest that the broad maximum observed in scattering experiments is due to clustering of chains.Comment: 12 pages, REVTeX, 15 eps figure

    Scaling and Universality in the Counterion-Condensation Transition at Charged Cylinders

    Full text link
    We address the critical and universal aspects of counterion-condensation transition at a single charged cylinder in both two and three spatial dimensions using numerical and analytical methods. By introducing a novel Monte-Carlo sampling method in logarithmic radial scale, we are able to numerically simulate the critical limit of infinite system size (corresponding to infinite-dilution limit) within tractable equilibration times. The critical exponents are determined for the inverse moments of the counterionic density profile (which play the role of the order parameters and represent the inverse localization length of counterions) both within mean-field theory and within Monte-Carlo simulations. In three dimensions (3D), correlation effects (neglected within mean-field theory) lead to an excessive accumulation of counterions near the charged cylinder below the critical temperature (condensation phase), while surprisingly, the critical region exhibits universal critical exponents in accord with the mean-field theory. In two dimensions (2D), we demonstrate, using both numerical and analytical approaches, that the mean-field theory becomes exact at all temperatures (Manning parameters), when number of counterions tends to infinity. For finite particle number, however, the 2D problem displays a series of peculiar singular points (with diverging heat capacity), which reflect successive de-localization events of individual counterions from the central cylinder. In both 2D and 3D, the heat capacity shows a universal jump at the critical point, and the energy develops a pronounced peak. The asymptotic behavior of the energy peak location is used to locate the critical temperature, which is also found to be universal and in accordance with the mean-field prediction.Comment: 31 pages, 16 figure

    In situ measurement of atmospheric krypton and xenon on Mars with Mars Science Laboratory

    Get PDF
    Mars Science Laboratory's Sample Analysis at Mars (SAM) investigation has measured all of the stable isotopes of the heavy noble gases krypton and xenon in the martian atmosphere, in situ, from the Curiosity Rover at Gale Crater, Mars. Previous knowledge of martian atmospheric krypton and xenon isotope ratios has been based upon a combination of the Viking mission's krypton and xenon detections and measurements of noble gas isotope ratios in martian meteorites. However, the meteorite measurements reveal an impure mixture of atmospheric, mantle, and spallation contributions. The xenon and krypton isotopic measurements reported here include the complete set of stable isotopes, unmeasured by Viking. The new results generally agree with Mars meteorite measurements but also provide a unique opportunity to identify various non-atmospheric heavy noble gas components in the meteorites. Kr isotopic measurements define a solar-like atmospheric composition, but deviating from the solar wind pattern at 80Kr and 82Kr in a manner consistent with contributions originating from neutron capture in Br. The Xe measurements suggest an intriguing possibility that isotopes lighter than 132Xe have been enriched to varying degrees by spallation and neutron capture products degassed to the atmosphere from the regolith, and a model is constructed to explore this possibility. Such a spallation component, however, is not apparent in atmospheric Xe trapped in the glassy phases of martian meteorites

    1862-07-28 Quarter Master S. H. Manning recommends William B. Fenderson for appointment as Quarter Master

    Get PDF
    https://digitalmaine.com/cw_me_5th_regiment_corr/1435/thumbnail.jp

    Dynamics of Counterion Condensation

    Full text link
    Using a generalization of the Poisson-Boltzmann equation, dynamics of counterion condensation is studied. For a single charged plate in the presence of counterions, it is shown that the approach to equilibrium is diffusive. In the far from equilibrium case of a moving charged plate, a dynamical counterion condensation transition occurs at a critical velocity. The complex dynamic behavior of the counterion cloud is shown to lead to a novel nonlinear force-velocity relation for the moving plate.Comment: 5 pages, 1 ps figure included using eps
    corecore