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The dose rate in a rotationally-symmetric radiation field near a space power reactor

is assumed to be inversely proportional to separation distance squared and directly propor-

tional either to a constant or a constant times the sine-cubed of a polar angle. Constant

velocity motion (constant speed and direction) is examined in both cases in both two- and

three-dimensional geometries. The two-dimensional geometry occurs when the line of

motion and the field axis of symmetry are co-planar. The dose integral in the sine-cubed

region may be integrated directly, but a more useful form is obtained after a change of vari-

able. A coordinate system rotation greatly simplifies the results. The three-dimensional

problem is integrated after a change of variable. Finally, tables of normalized functions are

presented and discussed.

INTRODUCTION

A key problem associated with the study of

nuclear energy sources in space is the evaluation of the

leakage radiation reaching the astronauts or other radio-

sensitive detectors. This paper discusses a solution to

the problem of constant velocity motion near a space

power reactor with a specific leakage radiation pattern.

The term "constant velocity" is intended to be under-

stood in the vector sense implying constant speed and

constant direction.

and

= constant ,

al = constant ,

_b = constant ,

dp = V = constant
dt

In region II, the dose rate is

The radiation field description was derived from

material presented by Atomics International in Refer-

ences 1 and 2 and is illustrated in Figures 1 and 2.

Figure 3 depicts an isodose contour in the (x, +y) half-

plane. The radiation source is represented as a point

source located at the origin O. The radiation field is but

assumed to be comprised of three regions. Region I

represents the field due to an unshielded isotropic

source or leaking through a relatively thin shield.

Region HI represents the field behind a thick "biological thus,

shield" of half-angle E. In both regions, the shield is

assumed to be of approximately uniform attenuation with

azimuth angle so the dose rate is a function of distance

alone. Region II represents the transition between

regions I and HI. Because of variations in attenuation

and/or source strength, the dose rate has an azimuthal

dependence. The field studied here varies as the sine- where

cubed of a polar angle _ measured from an abscissa

inclined an angle 6 to ,the x-axis.

MOTION WITHIN A SINGLE PLANE

Consider first the case where the detector moves

with constant velocity along a line p contained within a

nonrotating plane which also contains the x-axis. Let us

first examine the case where all motion is in region II,
or

?r

(E-6) -<¢-<_

Let the motion be outward along p from an initial posi-

tion P1. Then, from _igure 4,

r(P1) = rl = constant

DII = K1 sin s
al}

¢=(_-D ;

sin s c_ sin c_

13i/ =A _+ B rT

sin _'

--+C r-- _

A = K 1 cos 36 ,

B = K 1 cos 6sin 2'3

C = K 1 sin 6cos 2 6

D = K 1 sin 35 ,

oLT = 2 - O_ t

and

r = RII

Consider the first term. Referring back to

Figure 4 and introducing initial conditions,
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(NOTE: MULTIPLY DOSE RATES BY 0.58 TO GET GAMMA DOSE RATE IN mrad/hr)
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FIGURE 1. REACTOR INDUCED RADIATION FIELD
ABOUT 25 kwe REACTOR-TE POWER SYSTEM
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FIGURE 3. GEOMETRY OF A PLANAR ISODOSE

CONTOUR
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FIGURE 2. SPACE STATION RADIATION ENVIRONMENT

FROM NUCLEAR REACTOR

t

FIGURE 4. CONSTANT VELOCITY MOTION IN A PLANE
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r sinc_ = r I sinc_ 1 + psin

Also,

r 2 = p2 + rl2 + 2prlcos(_ - c_ 1)

We now write

• A (r I sin c_ 1 + p sin _)3 dp
DIIA V

[rl 2 + 2pr 1 cos (_ - _l) + p2]"/2
dt

The limits for the complete integral along the line are:

p(1) = 0

and

p(2) : oo

By integrating and inserting the limits and simplifying,

the equation above eventually yields

A { ( sin3 _'1 + sin3 _)DIIA = 3rl---'-V It + cos (_ - c_l)]

(sin c_1 + sin _)3 /

+ [1 + cos (_ - o_1) 2]

CHANGE OF VARIABLE

This general form is somewhat cumbersome to

handle. A more useful, if somewhat restricted, form

may be obtained through a change of variable before

integration. Referring again to Figure 4, we observe

that

rcosc_ = r lcos_l + pc°s

Taking this in conjunction with the expressions above,

we find that

sin (_ - Oil)
r = r 1 sin (_ - _) '

sin {o_ - ai)

P = rl sin (_ - oz)

and

dp = sin (_ - al) dc_

dt sinZ (_ - (_) dt

Substituting into the dose rate expression,

• _ sin 3 c_ dc_

DIIA sin (_ - _1) dt

The limits will be in general

and

(2) = _2

By integrating and inserting the limits, we have the com-

plete first term,

A F3(cos c_1 - cos c_z) -,(cos 3 c_l - cos 3 (_.) ]
DIIA = 3-_V L sin (_ - c_l) J

The second term of the expanded dose rate equa-
tion is

• B sin c_

DII B - r2

which yields immediately

B (cos _1 - cos _2)

DIIB = rl---V sin (_ - _1)

using the limits above•

The doses DII C and DII D may be evaluated using

the arguments above but with the complementary angle

(_'. The complete dose expression can now be written as

K1 {cos 3513(cos c_1 - cos _2)
DII - 3rlV sin (_ - (_1)

- (cos 3 o_1 - cos 3 o_2) ]

+ 3 cos 6 sin 25 (cosc_ 1 - cosc_)

- 3sinScos25 (cosc_ 1' - cosc_')

+ sin3513(cos_ 1' - cosc_)

(c°sa a_' - cos3 a2')l}

This iorm is valid except in the case of radial motion

discussed below. An additional minor constraint is that

_i _ £.

This expression can be greatly simplified by per-

forming a coordinate system rotation through an angle 5.

Thus,

oz * = o_ - 5 = 4) ,

_::_ = _ - 6 ,

_5. = 0 ,

and, constraining the point Pl , to lie along the nc_ = 5

line,

Dii(0, q5 ) = K....__[cos3_ - 3cos_5 + 2]3rlV sin (_ - 5)

where the parentheses on the left are used to indicate the

angular limits. The radial case may be integrated

directly from the dose rate equation. It is unaffected by

the coordinate system rotation;

K 1 1 sin3 4)
DII(@,4)) - V r I r
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The case of constant velocity co-planar motion in

an inverse square field has been solved before and is

included here only for completeness and notational con-

sistency. Referring to Figure 5, we again let the motion

be along a line p, and, as before,

r(p1) = r 1 = constant ,

= constant ,

s t = constant ,

_t = constant ,

and

dp = constant = V
dt

The dose rate is given by

15_ K
r 2

We observe that

7r

n--_-(_ -c,) ,

r = r tcos_i sec_ ,

p = r t cos _t (tan _ - tan _l)

and

thUS,

dPdt= r lcostlt sec2_ d_dt ;

K[ o,-otlD = r-_ sin (_ - _I)

MOTION IN THREE DIMENSIONS

If isodose contours such as in Figure 3 are

rotated through 27r radians around the x-axis, a complex
three-dimensional radiation field will be produced.

Assume constant velocity motion along an arbitrarily

oriented straight line, as in Figure 6. Again, let us

first examine the case of motion within region II along

the line P1P = p outward from an initial position PI.
The radiation field polar angle is again

_:Ol -5 ,

and, as before,

sin 3 _ sins sin _'

-r_f_II=A_+ B_+ C _ + D_

sin3 _v

r 2

The direct integral of the cubic term has not been

obtained; however, the term has been successfully inte-

grated after performing a variable change similar to that
in the restricted solution of the co-planar case.

p
""., J //

x /

Po

FIGURE 5. CONSTANT VELOCITY COPLANAR MOTION
IN AN INVERSE SQUARE FIELD

X_ °'1

FIGURE 6. CONSTANT VELOCITY MOTION
IN THREE DIMENSIONS
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Theradiusvectortothe initial point can be
written

^ 4 _ cosTl)rl ,r i = (icosa I + jcos_i +

where r i -- I_i) and cos cq, cos ill, and cos Yi are

direction cosines. Similarly, the vector traced by the
moving point is

= (fcos ÷  eos % ÷ cos p)p'

Since the direction is constant, p/p is constant. The

angle between these two vectors is also a constant,

cos X = cos _1 cos _ + cosfll coSflpP

+ cos "YI cos Tp

Figure 7 illustrates the nonrotating plane contain-

ing the vectors r, ri, and p. This plane contains the

variable angle 0 between the vector r and the (x,y)
plane. Consider the nonrotating plane containing the

x-axis and ffl and the rotating plane containing the
x-axis and r. In the former, there is the constant angle

_l and in the latter the variable angle _. If a unit

sphere is constructed at the origin, these three angles

become the sides of a spherical triangle. If the face

angle opposite side _ is called k, then

cosc_ = cosalcos (8 - 0 i)

FIGURE 7. PLANE OF MOTION IN THREE-DIMENSIONAL CASE

sin (0 - Ol)
P = rl sin (_ - O) '

+ sincr 1 sin (0 - 01) cosk and

But, X is also the angle between the planes containing

POP 1 and PlOXI. Thus,

\ rlp r i /sin

and

COS A.=

X sin cq

cosc_ sinZ_i - coscq(cosflpcos_i + cosypcosTl)

sin × sin cq

Continuing, we simplify

coso_ = kcos [0 - (O1 - ¢)]

where the phase angle ¢ is defined by

tan_ = tana lcosk

and the modulus k is found from

k 2 = cos 2a 1 + sin 2cq cos 2X

= sin (_ - 0 l)d0dp rt
dt sin 2 (_ - 0) d-[

The dose rate is now

i {! - k2c°s2[O - (01 + ¢)]} 3/2 d...O0
buA - riV sin (_ - 0) dt

Let

and

sin 2_ = cos2[O - (0 l+ _)1

1/
A = (I - k 2sin 2#)_2 , k_ _'_ t

and the expression integrates to

A [k2A sin g cos
DIIA = 3rlV sin (_ - 01)

- (1 - k2)F(k,#)

We note in passing that 01, ¢, and k are defined by
initial conditions only and that k 2 -< t.

+ 2(2 - k2)E(k, lz)] _(2)
u(i) '

Returning to Figure 7, we may write

sin (_ - Oi)
r = r l sin (_ - 0) '

where F(k, p) is the incomplete ellipticintegral of the

firstkind and E (k,/z) is the incomplete ellipticintegral

of the second kind. The limits of integration are indi-

cated outside the bracket on the right.
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Using the substitutions above, the second term in
the expanded dose rate equation becomes

thUS,

and

• B A cl_
DHB = rtV sin (_ - el) dt ;

B u(2)

DHB = rtV sin (_ - 81) [E(k'/_)]/_(I)

The third term may be written as

d__• Ck sin/_ •
DIIC = rtV sin (_ - 81) dt '

Ck (cos/_ (I)DHC = riV sin (_ - 01) (2)

The lastterm is

Dk3 d_
[)IID = rtV sin (_ - 0i) sin3/_ dt

which yields

Dks
DIID =_ 3rtVsin (_ - eI) _(1)(3 cos/_ - cos3/_ (2)

The complete expression for the three-
dimensional case could now be constructed using the

components above. Regrettably, no simplifying step .....

such as the coordinate system rotation used in the planar
case has been found.

The restriction against radial motion applies

here as in the planar case. However, as radial motion
is necessarily co-planar with the x-axis, the special
form given earlier will apply•

APPLICATIONS

Many problems involved with close-in operations
near a nuclear power source can be adequately approxi-

mated by assuming constant velocity co-planar motion.
The integral dose in this case can most easily be found

from the expression for DII(0, _b) developed above. The

expression can be normalized as

Dii(0,_b) rIV sin (_ - 6) _ (cos3 _b - 3cos ¢ + 2)
K l 3

This expression is tabulated as a function of the angle
in Table 1. This table is organized in standard math

table format and allows five significant figure values of

the function to be read corresponding to three significant

figure values for the angle _b. Linear interpolation is
used for intermediate values.

TABLE 1. NORMALIZED DOSE INTEGRALS

FOR A TWO-DIMENSIONAL CASE

0 1 2 3

".0 00000 00000 00000 00000

1o0 00000 00000 00000 00000

2.0 00000 00000 00000 00000

3.0 00000 00000 00000 00000
#,0 00001 00001 00001 00001

5,0 00001 00002 00002 00002

6,0 00003 00003 00003 0000#

7,0 00006 00006 00006 00007

8.0 0000_ 00010 00010 00011

9,0 00015 00016 000%6 00017

iO.O 00023 00024 00025 00026

11,0 00034 00035 00036 00037
12,0 00047 000#9 00051 00052

13,0 00065 00067 00069 00071
1#.0 00087 00090 00092 00095

15,0 00115 00118 00121 0012#
16,0 001#8 00152 00156 00159

17,0 00188 00193 00197 00202

18,0 00236 002#1 002#6 00251

19.0 00291 00298 0030# 00310

20*0 00356 00363 00371 00378

21.0 00#31 00#39 00##8 00#56

22,0 005%7 00527 00536 005#5
23.0 00615 00626 00636 006#7

2#,0 00726 00738 00750 00762

25,0 00850 0086# 00877 00891

26,0 00990 01004 01019 01035

27,0 011#5 01161 01178 01195

28,0 01317 01335 01353 0%372

29,0 01506 01526 015#6 01567

30,0 01715 01737 01759_01781

31,0 019#3 01967 01991 02015
32,0 02192 02218 022## 02271

33.0 02#63 02491 02520 025#8

3#,0 02756 02787 02818 028#9

35,0 03073 03106 03140 03173

36,0 03#15 03451 03#87 03523

37,0 03783 03821 03859 03898

38,0 0#176 0#217 _#258 0#300

39,0 0#59? 0#641 04685 0#729
#0.0 050#7 05093 051#0 05187

41,0 05525 05574 0562# 0567#
#2"0 06033 06085 061.38 06191

#3,0 06571 06626 06682 06738
##'0 071#0 07199 07258 07317

0 % 2 3

# 5 6 7 8 9

00000 00000 00000 00000 OCO00 00000

00000 00000 00000 C0000 00000 00000
00000 00000 00000 CO000 00000 00000

00000 00000 OCO00 00000 00000 00001
00001 00001 00001 00001 0000% 00001

00002 00002 00002 00002 00003 00003
0000# 0000# 0000# 00005 00005 00005

00007 00007 00008 C0008 00009 00009
00011 00012 00013 00013 0001# 0001#

00016 00019 00020 00020 00021 00022

00027 00028 00029 00030 00031 00032

00039 000#0 000#1 00043 000## 000#6

0005# 00056 00058 00059 00061 00063

00073 00076 00078 00080 00083 00085
00098 00100 00103 00106 00109 00112

00127 00131 0013# 00137 001#1 001#5

00163 00_67 00171 00175 00180 0018 #

00206 002_1 00216 00221 00226 00231
00257 00262 00268 0027# 00250 00285

00916 00323 00329 00336 003#3 003#9

00385 00393 00#00 00#08 00#16 00#23

00#6# 00#73 00#82 00#90 00#99 00508

00555 00565 00575 00585 00595 00605

00658 00669 00680 00691 00703 0071#

0077# 00786 00799 00812 0082400837

0090# 00918 00932 009#6 00961 00975

01050 01065 01081 01097 01112 01129
01211 01229 012#6 01263 01281 01299

01390 01#09 01#28 01#47 0%#67 01#87

01587 01608 01629 01650 01672 01693

0180# 01826 018#9 01872 01896 01919

020#0 0_065 02090 02115 02140 02166

02298 0_325 02352 C2379 02#07 02#35

02577 0B607 02636 0266602696 02726

02880 07912 0294# 02976 03008 030#_

03207 032#1 03276 03310 033#8 03380
03559 03596 03633 03670 0370? 037#5

03937 03976 0#016 C4055 04095 04136

04341 0#383 04#86 C##68 04511 0#554

0#77# 04818 0486# 0#909 0495_ 05000

0523# 05282 05330 C5378 05#27 05#76

0572# 05775 05826 05877 05929 05980
062#4 06298 06352 06406 06461 06516

06795 06852 06909 06966 0702# 07082

07377 07#37 07#97 07557 07618 07680

# 5 6 7 8 9

TABLE 1. (Concluded)

0 1 2 3 # 5 6 7 8 9

#5.0 07741 07803 07865 07928 07991 0805# 08117 08181 082#5 08310

#6.0 0837# 08440 08505 08571 08637 08703 08770 08837 08905 08972

#7.0 09041 09109 09178 092_7 09316 09386 09#56 09527 09597 09669

#8,0 097#0 09812 0988# 09956 10029 10102 10176 10250 10324 10398

#9.0 10#73 105#9 1062# 10700 10776 10553 10930 11007 1108# 11162

50,0 112#1 11319 11398 11#78 11557 11637 11718 11798 11879 11961
51,0 12043 12125 12207 12290 12373 12#57 125#0 12625 12709 1279#

52,0 12879 12965 13051 13137 1322# 13311 13398 13486 1357# 13662
53.0 13751 13840 13929 14019 1#109 14200 1#290 1#382 1#473 14565

54,0 14657 1#750 1#8#3 14936 15030 1512# 15218 15313 15408 15503

55.0 1559_ 15695 15792 15888 15986 16083 16181 16279 16378 16477

56,0 16576 16676 16776 16876 16977 17078 17179 17281%7383 17485
57,0 17588 17691 17795 17898 18003 18107 18212 18317 18423 18529

58,0 18635 187#2 18849 18956 1906# 19172 19280 19389 19498 19607

59,0 19717 19827 %9937 _0048 20159 20271 20383 20#95 20607 20720
60,0 20833 209#7 21061 21175 21290 21#04 21520 21635 21751 21867

61,0 2198# 22101 22218 22936 22#54 22572 22691 22810 22929 23049

62.0 23169 23289 23#%0 23531 23652 23773 23895 2#018 24140 2#263

63,0 24387 24510 2#63# _4758 24883 25008 25133 85259 25385 25511

6#,0 25638 2576# 25892 26019 261#7 26275 26#0# 26533 26662 26791

65,0 26921 27051 27181 _7312 27##3 27575 27706 27838 27970 28103
66,0 28236 28369 28503 _8637 28771 28905 29040 29175 29310 29##6

67_0 29582 29718 29855 29992 30129 30266 30#04 305#2 30681 30819

68.0 30958 31098 31237 31377 31517 31658 31798 31939 32081 32222
69*0 3236# 32506 326#9 32791 32934 33078 33221 33365 33509 3365#

70,0 33798 33943 3#088 3#23# 3#380 34526 3#672 3#819 34966 25113

71,0 35260 35408 35556 3570# 35852 36001 26150 36299 36##9 36599
72.0 367#9 36899 370#9 37200 37351 37502 37654 37806 37958 38110

73,0 38263 38#15 38568 38722 38875 39029 39183 39337 39#91 396#6
74,0 39801 39956 #0112 #0267 #0#23 #0579 40735 #0892 #10#9 #1205

75,0 #1363 #1520 41678 41836 4199# #2152 42310 #2469 #2628 #2787

76,0 429#6 43106 43266 #3426 #3586 #37#6 43907 #4068 44228 ##390
77,0 #4551 4#713 ##87# 45036 45198 #5361 #5523 #5686 #5849 46012

78,0 #6175 46339 #6502 #6666 #6830 #6994 _7158 #7323 #7#87 #7652

79.0 47817 #7983 #81#8 #8313 #8479 486#5 48811 48977 491#3 #9310

80.0 #9476 #96#3 #9810 ¢9977 501## 50312 50#79 506#7 50815 50983
81,0 51151 51319 51#87 51656 51825 51993 52162 52331 52500 52670

82,0 52839 53009 53178 539#8 53518 53688 53858 54029 5#199 54369
83,0 5#5#0 5#711 5#882 55053 55224 55395 55566 55737 55909 56080

84,0 56252 56#2# 56595 56767 56939 57111 5728# 57#56 57628 57801

85,0 57973 581#6 58318 58_91 5866# 58837 59010 59183 59356 59529

86,0 5970_ 59876 600#9 60222 60396 60569 60743 60917 61090 61264
87,0 61438 61612 51786 61960 62123 6_307 62#82 62656 62830 63004

88,0 63178 63352 63527 63701 63875 64050 6#22# 64398 64873 6#747

89,0 64922 65096 65271 654#5 65620 6579# 65969 661#3 66318 66492

0 1 2 3 # 5 6 7 8 9
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Values from this table give the integral dose

along a line originating on the _ = 0 or _l = 5 line
and proceeding outward until _ - 5 = ¢. The inclina-

tion of the line is accounted for in the normalizing con-
stants. Integral dose accrued between the points at _bl

and _2 on the same line as [Dii(0,_b2) - DII(0 - _1)].

This allows one to correct for the small differ-

ence between _ = c, the closest the axis may be

approached in region II, and c_ = 5, the abscissa of
the extended field contours.

Another useful form results from constraining P1

to lie along the ¢ = _ line; thus,

DH 3'_b = 3rlV cos (_ - 5) "

This dose is related to the tabulated dose by

0/:[o 0,]oo 0,
The three-dimensional problem in region II con-

tains too many variables to allow simple parametric
representation. To obtain sample results, a specific

field pattern was chosen and values of the integral above

were obtained. The field axis offset angle, 6 = 8.663

degrees, corresponds to the field illustrated in

Figures 1 and 2. Generalized values of the resulting
integral are shown in Table 2 as functions of the modu-

lus k and the field angle # defined above. The table

is read in a manner similar to Table 1; thus,

Dii(k, lzi,/z2) = DII(k, p2) - Dii(k,p l)

where it is understood that the normalizing factor
[rlV sin (_ - 0)/k] has been divided out of both sides

of the expression.

T^SL_ _ NOrO_UZED _ _T_Cr_ FO_ ^ THREE-D_SmNAL C^SE,
6 - _ 6_7 DEOa_ES
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