
Haverford College Haverford College 

Haverford Scholarship Haverford Scholarship 

Faculty Publications Mathematics & Statistics 

1996 

A Continuum Rod Model of Sequence-Dependent DNA Structure A Continuum Rod Model of Sequence-Dependent DNA Structure 

Robert S. Manning 
Haverford College, rmanning@haverford.edu 

John H. Maddocks 

Jason D. Kahn 

Follow this and additional works at: https://scholarship.haverford.edu/mathematics_facpubs 

Repository Citation Repository Citation 
A Continuum Rod Model of Sequence-Dependent DNA Structure, R.S. Manning, J.H. Maddocks and J.D. 
Kahn, J. Chem. Phys. 105 (1996) 5626. 

This Journal Article is brought to you for free and open access by the Mathematics & Statistics at Haverford 
Scholarship. It has been accepted for inclusion in Faculty Publications by an authorized administrator of Haverford 
Scholarship. For more information, please contact nmedeiro@haverford.edu. 

https://scholarship.haverford.edu/
https://scholarship.haverford.edu/mathematics_facpubs
https://scholarship.haverford.edu/mathematics
https://scholarship.haverford.edu/mathematics_facpubs?utm_source=scholarship.haverford.edu%2Fmathematics_facpubs%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:nmedeiro@haverford.edu


A continuum rod model of sequencedependent DNA structure
Robert S. Manning, John H. Maddocks, and Jason D. Kahn 
 
Citation: J. Chem. Phys. 105, 5626 (1996); doi: 10.1063/1.472373 
View online: http://dx.doi.org/10.1063/1.472373 
View Table of Contents: http://jcp.aip.org/resource/1/JCPSA6/v105/i13 
Published by the American Institute of Physics. 
 
Additional information on J. Chem. Phys.
Journal Homepage: http://jcp.aip.org/ 
Journal Information: http://jcp.aip.org/about/about_the_journal 
Top downloads: http://jcp.aip.org/features/most_downloaded 
Information for Authors: http://jcp.aip.org/authors 

Downloaded 29 Mar 2013 to 165.82.168.47. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions

http://jcp.aip.org/?ver=pdfcov
http://www.physicstoday.org/
http://jcp.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=Robert S. Manning&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://jcp.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=John H. Maddocks&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://jcp.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=Jason D. Kahn&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://jcp.aip.org/?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.472373?ver=pdfcov
http://jcp.aip.org/resource/1/JCPSA6/v105/i13?ver=pdfcov
http://www.aip.org/?ver=pdfcov
http://jcp.aip.org/?ver=pdfcov
http://jcp.aip.org/about/about_the_journal?ver=pdfcov
http://jcp.aip.org/features/most_downloaded?ver=pdfcov
http://jcp.aip.org/authors?ver=pdfcov


A continuum rod model of sequence-dependent DNA structure
Robert S. Manninga) and John H. Maddocksb)
Institute for Physical Science and Technology and Department of Mathematics, University of Maryland,
College Park, Maryland 20742

Jason D. Kahnc)
Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742

~Received 20 May 1996; accepted 28 June 1996!

Experimentally motivated parameters from a base-pair-level discrete DNA model are averaged to
yield parameters for a continuum elastic rod with a curved unstressed shape reflecting the local
DNA geometry. The continuum model permits computations with discretization lengths longer than
the intrinsic discretization of the base-pair model, and, for this and other reasons, yields an efficient
computational formulation. Obtaining continuum stiffnesses is straightforward, but obtaining a
continuum unstressed shape is hindered by the ‘‘noisy’’ small-scale structure and rapid helix twist
of the discrete unstressed shape. Filtering of the discrete data and an analytic transformation from
the true normal-vector field to a natural~untwisted! frame allows a stable continuum fit. Equilibrium
energies of closed rings predicted by the continuum model are found to match the energies of the
underlying discrete model to within 0.5%. The model is applied to a set of 11 short DNA molecules
(' 150 bp! and properly distinguishes their cyclization probabilities~J factors! when compared
both to experimental cyclization rates and to Monte Carlo simulations. The continuum model does
not include entropic contributions to the free energy. However, because of its rapid and accurate
computation of internal energy, the continuum model should, when combined with further work on
entropic effects, be a useful method for computing experimental DNA free energies. ©1996
American Institute of Physics.@S0021-9606~96!51437-6#

I. INTRODUCTION

Recently, there has been considerable interest in model-
ing the large-scale deformation of DNA molecules using
elastic rod theories~see e.g., recent review articles by
Schlick1 and Olson2!. However, with some notable
exceptions,3–6 most continuum studies have modeled DNA
by a straight uniform rod, which neglects the DNA’s intrin-
sic curvature. Our goal is to develop a model using an intrin-
sically bent and twisted elastic rod whose curvatures are de-
termined directly from the properties of the underlying base-
pair sequence. Sequence-dependent effects have been
included in other DNA studies, such as all-atom models7 and
models which treat each base-pair as a rigid unit,8–10 but
these methods can be prohibitively time-consuming for all
but the smallest DNA molecules.

A theory of elastic rods encompassing effects of intrinsic
curvature is a classic topic of continuum mechanics.11 Re-
cently, an associated computationally efficient formulation
has been developed12,13 with a particular emphasis on solv-
ing the loop boundary-value problem arising in modeling
cyclized DNA. The continuum model requires input param-
eters giving the rod’s unstressed shape and stiffnesses, and in
this paper, we propose and verify a procedure for determin-
ing these parameters from the DNA base-pair sequence.

In Section II we present the discrete wedge-angle model,
a widely accepted base-pair level model for DNA, and in

Section III we outline the continuum theory of elastic rods.
In Section IV, we present the basic formalism for finding
equilibria in both the discrete and continuum problems. The
determination of continuum stiffnesses is presented in Sec-
tion V, and the determination of the continuum unstressed
shape is presented in Section VI, including a crucial filtration
of the discrete centerline and an analytic transformation from
the rapidly twisting normal-vector field tracking the sugar–
phosphate chains to an untwisted natural frame. In Section
VII, we summarize our procedure for determining continuum
model parameters from discrete model parameters and sub-
sequently computing equilibrium configurations and ener-
gies. In Section VIII we investigate the robustness of these
continuum computations. In Section IX, we verify the accu-
racy of the continuum model by comparing equilibrium en-
ergies and configurations of the discrete model and of the
corresponding continuum model. Finally, in Section X we
apply the continuum rod theory to model the cyclization
rates of a family of short DNA molecules and compare cy-
clization energies to values determined both experimentally
and from Monte Carlo simulations. These comparisons dem-
onstrate that for large-scale bending deformations, the con-
tinuum model with sequence-dependent structure captures
the essential physics of the DNA cyclization.

II. A DISCRETE BASE-PAIR LEVEL MODEL FOR DNA

Each of the two strands of DNA consists of a sugar–
phosphate chain and, at regular intervals, side chains called
bases, of which there are 4 types: adenine~A!, cytosine~C!,
guanine ~G!, and thymine~T!. The two sugar–phosphate

a!Electronic mail: rmanning@ipst.umd.edu
b!Electronic mail: jhm@ipst.umd.edu
c!Electronic mail: kahn@adnadn.umd.edu
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chains wind about each other in a double helix and are bound
together by one of two pairings of bases: A with T, or C
with G.

We present here one of the commonly used discrete
models for DNA, namely the wedge-angle model.9 We em-
phasize that the central ideas of this paper do not rely intrin-
sically on the specific details of this particular choice of dis-
crete model; with slight adaptations, the procedures we
propose could be used to obtain continuum versions of other
discrete base-pair level models, such as the junction model
or trinucleotide models.14

The wedge-angle model treats the base-pairs as rigid
units, which stack on top of each other according to the
atomic geometries and interactions of the base-pairs.15 Re-
garded as a rigid body, base-pairi can be completely de-
scribed by an orthonormalframe, i.e., an originr ( i ) and a set
of 3 mutually perpendicular unit vectors (d1

( i ) ,d2
( i ) ,d3

( i )). The
origin r ( i ) is located at the center of the base-pair,d3

( i ) points
toward the center of the next base-pair,d1

( i ) points to the
center of the major groove, andd2

( i ) is determined by mutual
perpendicularity (d2

( i )5d3
( i )3d1

( i )); see Figure 1. It will prove
convenient to label the first frame byi50 and the last frame
by i5N.

To determine framei11 given framei , one performs a
three-dimensional rotation whose representationin the basis
of frame i is given by an orthogonal 3-by-3 matrixR( i ). For
example, if

R~ i !5F cost 2sin t 0

sin t cost 0

0 0 1
G ,

thendj
( i11) , j51,2,3, is obtained by rotatingdj

( i ) by an angle
t aboutd3

( i ) ~note3). The rotation matrixR
( i ) is described by

3 Euler angles (t ( i ),f ( i ),u ( i )), which represent successive
rotations aboutd2

( i ) , d1
( i ) , andd3

( i ) . That is, we define

Rt~t![S cost 2sin t 0

sin t cost 0

0 0 1
D ,

Rf~f![S cosf 0 sinf

0 1 0

2sin f 0 cosf
D ,

Ru~u![S 1 0 0

0 cosu sin u

0 2sin u cosu
D ,

and thei th rotation matrix is given by

R~ i ![R~u~ i !,f~ i !,t~ i !![Rt~t~ i !!Ru~u~ i !!Rf~f~ i !!

5F cosf cost 1sin u sin f sin t 2cosu sin t sin f cost2sin u cosf sin t

cosf sin t 2sin u sin f cost cosu cost sin f sin t1sin u cosf cost

2cosu sin f 2sin u cosu cosf
G . ~2.1!

There are several other definitions of Euler angles in com-
mon usage corresponding to different choices and orders of
rotation axes.16 The apparent inconsistency in the definition
of Rt as compared toRu andRf arises because we want
t.0 to represent a counter-clockwise rotation aboutd3 to
match the right-handed twist of natural A- and B-form DNA.
The change-of-basis formula and a simple recursion show
that the coordinates of (d1

( i ) ,d2
( i ) ,d3

( i )) in the standard basis
~i.e., the laboratory frame! are given by the columns of the
matrix R(0)R(1) . . .R( i21)

d1
~ i !5R~0!R~1! . . .R~ i21!e1 ,

d2
~ i !5R~0!R~1! . . .R~ i21!e2 , ~2.2!

d3
~ i !5R~0!R~1! . . .R~ i21!e3 .

Model parameters. An important set of parameters for
this discrete model are the Euler angles (û ( i ),f̂ ( i ),t̂ ( i )) that
describe the minimum-energy configuration of the DNA in
the absence of external forces. We call this configuration the

DNA’s unstressed shape, and call the corresponding Euler
angles theunstressed angles. The wedge-angle model as-
sumes that the values ofû ( i ), f̂ ( i ), and t̂ ( i ) depend only on
the stacking interactions of base-pairsi andi11, and not on
any other base-pairs~the nearest-neighbor assumption!.
There are 4 different base-pairs and hence 16 possible
2-base-pair stacks; thus, the parameters to describe the un-
stressed shape are 16 triples of angles

~ û,f̂,t̂ !AT/AT , ~ û,f̂,t̂ !AT/CG, ~ û,f̂,t̂ !AT/GC, . . . ,

~ û,f̂,t̂ !TA/GC, ~ û,f̂,t̂ !TA/TA .

However, only 10 of these triples are independent due to
symmetry considerations. There are several sets of these un-
stressed angles used in the literature, determined either by
empirical analysis of electrophoretic mobilities for a variety
of sequences~e.g., those of Trifonov9! or by a similar analy-
sis combined with molecular mechanics~e.g., those of De
Santis10!; see Table I.
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The unstressed angles determine the shape of the
minimum-energy configuration of the DNA molecule, but
we also need to know the energy penalty incurred by forcing
the molecule into another shape. The wedge-angle model

assumes that the energy increases quadratically when any of
the Euler angles (u ( i ),f ( i ),t ( i )) change from their unstressed
values (û ( i ),f̂ ( i ),t̂ ( i ))

E5 (
i50

N21 F12Ku~u~ i !2 û ~ i !!21
1

2
Kf~f~ i !2f̂~ i !!2

1
1

2
Kt~t~ i !2 t̂ ~ i !!2G . ~2.3!

Thus, this model also includes as parameters thestiffnesses
Ku , Kf , andKt . Estimates for these stiffnesses are avail-
able from experimental values for the persistence length
~specifyingKu andKf , from sedimentation, light scattering,
and cyclization experiments! and torsional modulus~specify-
ing Kt , from fluorescence anisotropy and cyclization!. Im-
plicit in Eq. ~2.3! is the assumption thatKu , Kf andKt are
the same for all base-pairs. This restriction is due to a lack of
appropriate experimental data to model nonuniform stiff-
nesses, at least at the time of the development of this wedge-
angle model. Given such experimental data, the continuum
model described in this paper could easily be extended to
include sequence-dependent stiffnesses. In addition, the en-
ergy~2.3! is assumed to be quadratic in the angles; if needed,
higher order terms could be included, e.g., to incorporate
asymmetric effects like DNA’s preference to undertwist
rather than overtwist.17

There is some ambiguity in delimiting the ends of the
DNA molecule. In many applications, it is reasonable to de-
clare that the molecule begins at the first base-pair and ends
at the last base-pair. However, in cyclization~the focus of

FIG. 1. Discrete model for DNA. Each frame has its origin at the center of
a base-pair, itsd3 axis pointing to the next base-pair center, and itsd1 axis
pointing to the center of the major groove.

TABLE I. Trifonov ~Ref. 9! and De Santis~Ref. 10! unstressed angles for the rotation from base-pairi to
base-pairi11. The direction from base-pairi to base-pairi11 will be the 58-to-38 direction on one DNA
strand and the 38-to-58 direction on the other strand. By convention, the name of a base-pair gives the name of
the base on the 58-to-38 strand followed by the name of its partner on the 38-to-58 strand~e.g., GC!. Base-
pairing and symmetry implies that only 10 of these sets of angles are independent; for example, the relationship
between the GC/AT angles and the TA/CG angles is clear from the table.

Base-pair stack û~Trif ! f̂~Trif ! t̂~Trif ! û~DeS! f̂~DeS! t̂~DeS!

AT/AT 26.5 3.2 35.6 25.4 20.5 35.9
AT/CG 20.9 20.7 34.4 22.5 22.7 34.6
AT/GC 8.4 20.3 27.7 21.0 21.6 35.6
AT/TA 2.6 0.0 31.5 27.3 0.0 35.0
CG/AT 1.6 3.1 34.5 6.8 0.4 34.5
CG/CG 1.2 1.8 33.7 1.3 0.6 33.0
CG/GC 6.7 0.0 29.8 4.6 0.0 33.7
CG/TA 8.4 0.3 27.7 21.0 1.6 35.6
GC/AT 22.7 24.6 36.9 2.0 21.7 35.8
GC/CG 25.0 0.0 40.0 23.7 0.0 33.3
GC/GC 1.2 21.8 33.7 1.3 20.6 33.0
GC/TA 20.9 0.7 34.4 22.5 2.7 34.6
TA/AT 0.9 0.0 36.0 8.0 0.0 34.6
TA/CG 22.7 4.6 36.9 2.0 1.7 35.8
TA/GC 1.6 23.1 34.5 6.8 20.4 34.5
TA/TA 26.5 23.2 35.6 25.4 0.5 35.9
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this paper!, the two ends of a DNA molecule are joined with
the usual inter-base-pair spacing between the last and first
base-pairs. Accordingly, to capture the geometry of the last
junction, we append a fictitious base-pair, and declare it to be
the same type~A, C, G, or T! as the first base-pair~since the
first base-pair will eventually follow the last in the cyclized
DNA!. This technicality is not a major change to the model,
but is worth including for the short DNA molecules consid-
ered in Section X. We adopt the convention that the mol-
ecule begins at the origin of the first frame (i50) and ends
at the origin of the last frame (i5N). For cyclization, there
are N base-pairs in the DNA molecule, because the last
frame is fictitious.

III. THE ELASTIC ROD MODEL

The special Cosserat theory of elastic rods is a standard
model in continuum mechanics.11 We restrict attention to
inextensible and unshearable rods, which are approximations
analogous to the assumption in the wedge-angle model that
each base-pair lies at the tip of thed3 axis of the previous
base-pair. Extensibility and shearability can easily be in-
cluded in the continuum model if needed.11,12 However, we
note that the cyclized DNA configurations described in Sec-
tion X involve forces of 0.5–3.0pN, which are much
smaller than the reported threshold of approximately 60
pN18,19 required to cause significant DNA extension. The
configuration of an inextensible and unshearable rod is given
by a continuous family of frames~mutually perpendicular
unit vectors! (d1(s),d2(s),d3(s)), with the origins of the
frames lying on the rod’s centerline andd3(s) given by the
centerline’s unit tangent vector. It is convenient to lets be
the arc-length parameter of the centerline and to choose a
length-scale so that 0<s<1. Under these assumptions, the
centerliner (s) can be recovered from the frames using the
relation

dr

ds
5d3~s!. ~3.1!

The interpretations of the centerline and frames in mod-
eling a DNA molecule are just as in the discrete model. The
centerliner (s) runs through the middle of the double helix,
passing through~or at least near! the centers of the base-
pairs. The normal vectord1(s) points from the centerline to
the center of the major groove, thus tracking the helix twist.

It is easily verified that given a continuous family of
~orthonormal! frames (d1(s),d2(s),d3(s)), there exists a
3-vector functionu(s) such that

di8~s![
d

ds
di~s!5u~s!3di~s!, i51,2,3. ~3.2!

By convention, we defineui to be the components ofu in the
director frame:

u~s!5u1~s!d1~s!1u2~s!d2~s!1u3~s!d3~s!. ~3.3!

Inserting Eq.~3.3! into Eq. ~3.2! leads to

u1~s!52d38~s!•d2~s!,

u2~s!5d38~s!•d1~s!, ~3.4!

u3~s!5d18~s!•d2~s!.

Given ui(s) and the initial frame (d1(0),d2(0),d3(0)), one
can solve the first-order differential equations~3.2! for the
frames at alls, and then recover the centerliner (s) using Eq.
~3.1!.

Model parameters. As in the discrete model, one impor-
tant input to the continuum model is a description of the
unstressed shape of the rod, given by three functionsû1(s),
û2(s), andû3(s). By standard convention in rod theory, the
shape descriptorsui are calledstrains, even when they refer
to the unstressed shape. We will call the quantitiesûi un-
stressed strains.

In addition to describing the unstressed shape of the rod,
we need to quantify the energy penalty in deviating from that
unstressed shape. We assume that the energy is quadratic in
the strains

E5E
0

1F12K1~u1~s!2û1~s!!21
1

2
K2~u2~s!2û2~s!!2

1
1

2
K3~u3~s!2û3~s!!2Gds[E

0

1

L ds, ~3.5!

where the integrand, i.e., the Lagrangian, is denoted byL.
Hence the stiffnesses (K1 ,K2 ,K3) are parameters for the
continuum model. Note that as in the discrete case, we could
extend this model to includes-dependence in (K1 ,K2 ,K3)
or terms of higher order than quadratic if required.

In summary, the continuum model requires the param-
eters (û1(s),û2(s),û3(s)) and (K1 ,K2 ,K3) as inputs. In
Sections V and VI, we present a method for determining
these parameters from the wedge-angle parameters
( û ( i ),f̂ ( i ),t̂ ( i )) and (Ku ,Kf ,Kt).

IV. DISCRETE AND CONTINUOUS EQUILIBRIUM
CONDITIONS

We outline the conditions for static equilibrium of the
discrete and continuous models. For the sake of concrete-
ness, we focus on equilibria of twisted closed rings, which is
the context of the cyclization application presented in Sec-
tion X; see Figure 2. Other boundary value problems could
be handled similarly.

A. The discrete rod

In the wedge-angle model for DNA described in Section
II, each base-pair is represented by a frame, and the rotation
from frame i to frame i11 is given by three Euler angles
(t ( i ),f ( i ),u ( i )), with unstressed values determined according
to the base-pairs in positionsi and i11. Without loss of
generality, coordinates may be chosen so that frame 0 has
origin r50, and directors (d1

(0) ,d2
(0) ,d3

(0)) equal to the stan-
dard coordinate axes (e1 ,e2 ,e3).

Cyclization requires that the origin of the final frame
also lie at the origin
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r ~N!50. ~4.1!

We have seen in Section II that each frame’s origin lies at the
tip of the previous frame’sd3 vector, so Eq.~4.1! can be
written as

d3
~0!1d3

~1!1 . . .1d3
~N21!50.

Using Eq.~2.2!, this becomes

~ I1R~0!1R~0!R~1!1 . . .1R~0!R~1!•••R~N22!!e350.
~4.2!

For convenience, we label this constraint function byg:

g~u~0!,f~0!,t~0!, . . . ,u~N21!,f~N21!,t~N21!!

[~ I1R~0!1R~0!R~1!1 . . .1R~0!R~1!•••R~N22!!e3 .

Further constraints prescribe the orientation of frameN

d1
~N!5F cosa

sin a

0
G , d2

~N!5F 2sin a

cosa

0
G , d3

~N!5F 00
1
G ,

~4.3!

which requires that the initial and final tangent vectorsd3
line up and that there be an imposed anglea between the
initial and final normal vectorsd1; see Figure 2. Note that
only a52np, nPZ gives continuity of the sugar–phosphate
backbone, but we consider a more general configuration for
computational convenience. Using Eq.~2.2!, we can rewrite
Eq. ~4.3! as

R~0!R~1!•••R~N21!5F cosa 2sin a 0

sin a cosa 0

0 0 1
G , ~4.4!

which appears to entail 9 constraints. In fact, since
R(0)R(1)

•••R(N21) is a priori a member ofSO(3) ~the
three-dimensional group of proper orthogonal rotations!,

these comprise only 3independentconstraints; e.g., it is an
easy exercise to show that the 3 constraints which we call
h1, h2, andh3

h1~u~0!,f~0!,t~0!, . . . ,u~N21!,f~N21!,t~N21!!

[e3
TR~0!R~1!•••R~N21!e250,

h2~u~0!,f~0!,t~0!, . . . ,u~N21!,f~N21!,t~N21!!

[e1
TR~0!R~1!•••R~N21!e350, ~4.5!

h3~u~0!,f~0!,t~0!, . . . ,u~N21!,f~N21!,t~N21!!

[e2
TR~0!R~1!•••R~N21!e15 sin a,

imply Eq. ~4.4! given that we knowR(0)R(1)•••R(N21)

P SO(3). @Actually, Eq. ~4.5! plus the condition that
R(0)R(1)•••R(N21) P SO(3) implies 8 possible values for
R(0)R(1)•••R(N21), namely

F 6cosa 2sin a 0

sin a 6cosa 0

0 0 1
G ,

F 6cosa sin a 0

sin a 7cosa 0

0 0 21
G ,

F 0 1 0

sin a 0 6cosa

6cosa 0 2sin a
G ,

F 0 21 0

sin a 0 7cosa

6cosa 0 sina
G .

However, these 8 elements are isolated inSO(3), so in our
search for discrete rod equilibria, as long as we have an
initial guess which nearly satisfies Eq.~4.4!, our computed
equilibrium using the constraint~4.5! will in fact satisfy Eq.
~4.4! and not one of the other seven possibilities.#

The discrete cyclization problem seeks critical points of
the energy~2.3!

E5 (
i50

N21 F12Kt~t~ i !2 t̂ ~ i !!21
1

2
Kf~f~ i !2f̂~ i !!2

1
1

2
Ku~u~ i !2 û ~ i !!2G

subject to the position constraints~4.2! and the orientation
constraints~4.5!. Thus, critical points of a function of 3N
variables (t ( i ),f ( i ),u ( i )) subject to 6 constraints must be
found. Although the functionE is simple, the constraints are
quite complicated, since eachR( i ) is a matrix with trigono-
metric entries depending on (t ( i ),f ( i ),u ( i )) ~see Eq.~2.1!!.
Incorporation of the constraints in the standard way with
Lagrange multipliersn and n leads to the nonlinear system

FIG. 2. Ring boundary conditions for a rod. The rod’s centerline is indicated
with a tube, and the normal vectord1 is indicated as a ribbon. Ats50, the
frame has origin (0,0,0) and is oriented along the standard axes. Ats51,
the frame has origin (0,0,0) and is rotated about thez axis by a prescribed
anglea. The s50 frame is drawn darker and at a larger scale in order to
distinguish it from thes51 frame.
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¹~E1n•g1n•h!50,

g50, ~4.6!

h5^0,0, sina&,

which involves 3N16 equations for the 3N16 unknowns
n, n, and $u ( i ),f ( i ),t ( i )%, for i50, . . . ,N21. The symbol
¹ denotes the gradient with respect to the angles
$u ( i ),f ( i ),t ( i )%. The only closed-form solution we know for
this system is the planar untwistedN-gon, e.g.,

u~ i !52p/N, f~ i !5t~ i !50, n152pKu /N,

n25n35n15n25n350, ~4.7!

which satisfies Eq. ~4.6! when a50 and û ( i )5f̂ ( i )

5 t̂ ( i )50; other solutions must be determined numerically.
For realistic values of (û ( i ),f̂ ( i ),t̂ ( i )) for DNA, we have been
unable to numerically determine solutions to Eq.~4.6! except
by using initial guesses derived from continuum solutions;
Section IX discusses this issue in more detail.

B. The continuous rod

In this section, we outline a formulation of the equilib-
rium conditions of continuum rods, which leads to the
boundary value problem~or BVP! consisting of the differen-
tial equations~4.9! and boundary conditions~4.11!. This sec-
tion defines the notation in the BVP and outlines its deriva-
tion. However, none of these details are required to
understand the remainder of the article; one can proceed di-
rectly to the summary paragraph at the end of this section if
desired. On the other hand, a more complete explanation of
the equilibrium formulation can be found in Li and
Maddocks.13

As described in Section III, a continuum~inextensible,
unshearable! rod is described by a continuous family of
frames (d1(s),d2(s),d3(s)). Each frame is an element of
SO(3), but rather than represent it by 3 Euler angles~as is
done with the local rotations in the discrete model!, it will be
convenient instead to represent it by a 4-vector of Euler pa-
rametersq(s), which must obeyuqu51. The Euler param-
eters provide the frame through the relations

d15F q122q2
22q3

21q4
2

2q1q212q3q4

2q1q322q2q4
G ,

d25F 2q1q222q3q4

2q1
21q2

22q3
21q4

2

2q2q312q1q4
G ,

d35F 2q1q312q2q4

2q2q322q1q4

2q1
22q2

21q3
21q4

2
G . ~4.8!

The strainsu1(s), u2(s), andu3(s) can be expressed as
functions of q(s) and q8(s). Thus, the Lagrangian in Eq.

~3.5! is a function of (q(s),q8(s),s), so a classic calculus of
variations problem arises, namely to find critical points of
the energy~3.5!

E5E
0

1

L~q~s!,q8~s!,s!ds

subject to the pointwise constraintsr 8(s)5d3(q(s)) and
uq(s)u51, and boundary conditions on (r ,q) at s50 and
s51 ~to be specified later in this section!. The first-order
stationarity conditions for this constrained Lagrangian sys-
tem can be transformed to an unconstrained Hamiltonian
system with Hamiltonian

H~r ,q,n, m!5(
j51

3 S ~mTBjq!2

8Kj
1
û j
2

mTBjqD1nTd3~q!.

Here n ~the force acting across a rod cross-section! is the
3-vector conjugate tor , m is the 4-vector conjugate toq, and
theBj are

B15F 0 0 0 1

0 0 1 0

0 21 0 0

21 0 0 0

G , B25F 0 0 21 0

0 0 0 1

1 0 0 0

0 21 0 0

G ,
B35F 0 1 0 0

21 0 0 0

0 0 0 1

0 0 21 0

G .
Determining (r (s),q(s),n(s), m(s)) involves solving the
standard Hamiltonian differential equations

r 85
]H

]n
5d3~q!,

q85
]H

]m
5(

j51

3 S mTBjq

2Kj
1û j D12Bjq,

~4.9!

n852
]H

]r
50,

m852
]H

]q
52S ]d3

]q D Tn1(
j51

3 S mTBjq

2Kj
1û j D12Bjm,

where]d3 /]q is found from~4.8!

]d3
]q

5F 2q3 2q4 2q1 2q2

22q4 2q3 2q2 22q1

22q1 22q2 2q3 2q4
G .

So, to find the stationary points for the continuum energy
functional ~3.5!, we solve the first-order system of differen-
tial equations~4.9! subject to appropriate boundary condi-
tions. The boundary conditions are the continuous analogue
of those used in the discrete problem

r ~0!5r ~1!50, d1~0!5e1 , d2~0!5e2 , d3~0!5e3 ,

d1~1!5^cosa,sin a,0&,
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d2~1!5^2sin a, cosa,0&, d3~1!5^0,0,1&,

which can be translated, using Eq.~4.8!, into variables ap-
pearing in the Hamiltonian

r ~0!5r ~1!50, q~0!5^0,0,0,1&,

q~1!5^0,0,2sin~a/2!,2cos~a/2!&. ~4.10!

Unfortunately, the BVP~4.9!1~4.10! has non-isolated
solutions, which prohibits numerical solution of the BVP via
continuation methods.@A solution~r ,q,n,m! is non-isolated if
for the same parameter values there are other solutions arbi-
trarily close.# In particular, the BVP~4.9!1~4.10! is invari-
ant to the symmetrym→ m1eq. This symmetry is a conse-
quence of using four Euler parameters to describe the locally
three-dimensional groupSO(3). To remove this non-
isolation, we replace the conditions~4.10! by equivalent
boundary conditions which factor out the symmetry: in par-
ticular, the conditionq4(0)51 ~which is implied by the
other seven boundary conditions onq and the fact thatuqu2 is
an integral of the Hamiltonian system! can be replaced by

the conditionm4(0)50, which selects a single representative
of the family of possiblem values. Accordingly, the bound-
ary conditions used are

r ~0!5^0,0,0&,

r ~1!5^0,0,0&,

q1~0!5q2~0!5q3~0!50, ~4.11!

m4~0!50,

q~1!5^0,0,2sin~a/2!,2cos~a/2!&.

In summary, the continuum equilibrium condition for a
twisted ring is the BVP consisting of the 14 differential
equations~4.9! and the 14 boundary conditions~4.11!, where
a is the angle betweend1(0) andd1(1). In thespecial case
that û1(s)5û2(s)5û3(s)[0 andK15K2 ~an intrinsically
straight and untwisted rod with equal bending stiffnesses,
which we call theperfect problem!, there is a closed-form
solution for this BVP

r ~s!5
1

2p F 0

cos~2ps!21

sin~2ps!
G , q~s!5F sin~ps!cos~as/2!

2sin~ps!sin~as/2!

cos~ps!sin~as/2!

cos~ps!cos~as/2!

G ,
~4.12!

n~s!5F 2pK3a

0

0
G , m~s!5F 4pK1 cos~ps!cos~as/2!22aK3 sin~as!sin~as/2!

24pK1 cos~ps!sin~as/2!22aK3 sin~as!cos~as/2!

24pK1 sin~ps!sin~as/2!12aK3 cos~as!cos~as/2!

24pK1 sin~ps!cos~as/2!22aK3 cos~as!sin~as/2!

G .
The numerical determination of other solutions of this BVP
is discussed in Section VII.

V. DETERMINING THE CONTINUUM STIFFNESSES

To motivate our conversion from angle-stiffnesses
(Ku ,Kf ,Kt) to strain-stiffnesses (K1 ,K2 ,K3), we consider
planar untwisted deformations of an intrinsically straight rod
~cf., Weinberger20!. Without loss of generality, let the planar
deformations occur in thex2z plane. Then in the discrete
problem we use rotations about they axis to get from one
frame to the next, sot ( i )5u ( i )50. The discrete energy is
therefore

E5 (
i50

N21
1

2
Kf~f~ i !!2.

We now defineb ( i )[( j50
i f ( j ) andb (21)[0 so that

E5 (
i50

N21
1

2
Kf~b~ i !2b~ i21!!2. ~5.1!

In the continuous problem, if we label bya(s) the
clockwise angle the rod’s tangent makes from vertical,
then we have d25^0,21,0&, d35^sina,0,cosa&, and
d15^cosa,0,2sina&. An easy computation shows that for
this case,u15u350 andu2(s)5da(s)/ds. So, our continu-
ous energy is

E5E
0

11

2
K2S da

ds
~s! D 2ds.

We change variables in the integral tot[Ns

E5E
0

N1

2
K2S da

ds S tND D 2dtN .

Now define

b~ t ![aS tND
for 0<t<N, so that

db

dt
~ t !5

1

N

da

ds S tND .
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Then

E5E
0

N1

2
K2SNdb

dt
~ t ! D 2dtN 5E

0

N1

2
NK2S db

dt
~ t ! D 2dt.

~5.2!

By inspection, it is clear that Eq.~5.1! is a discrete ap-
proximation of the integral~5.2! if we takeK25Kf /N. We
could repeat this process for a rod bent in they2z plane to
find thatK15Ku /N, or for a straight rod with twist to find
thatK35Kt /N.

Motivated by this argument, we adopt the conversion
rules

K15Ku /N, K25Kf /N, K35Kt /N. ~5.3!

This should not be taken as a proof of these relationships,
because in the full three-dimensional problem, the rotations
Ru , Rf , andRt do not commute, so the problem will not
decouple into the 3 simple cases discussed above. In DNA,
two of the three angles are small, soRu , Rf , andRt nearly
commute, and the scaling is at least plausible. In Section IX,
we test Eq.~5.3! by comparing discrete and continuous non-
planar ring equilibria, and we see that the conversion works
very well in that context.

VI. DETERMINING THE CONTINUUM UNSTRESSED
SHAPE

The wedge-angle model describes a DNA molecule as a
sequence of frames, with the origin of framei11 at the end
of d3 for frame i . Equivalently, we can think of this data as
a centerline~the uniond3

(0)ø . . .ød3
(N21)) and a sequence

of normal vectors~the d1 axes!. We will consider first the
conversion of the discrete centerline to a continuum center-
line, and then the conversion of the discrete set of normal
vectors to a continuous family of normal vectors.

A. Aligning the continuous and discrete centerlines

Though the discrete centerline ends atr (N), it is useful to
considerr (N11), the endpoint ofd3

(N) . We want to fit a con-
tinuous function r (t) through the sequence of points
r (0), . . . ,r (N11), so that r ( j ) is a good approximation to
r ( j ) for j50,•••,N11. In general, however, the direction of
d3
( j ) will be better approximated byr 8( j1 1

2) than byr 8( j );
see Figure 3. Accordingly, we declare that the continuous
rod begins att5 1

2 and ends att5N1 1
2, so that the discrete

and continuous directors match well at the ends of the rods

d3
~0!'

r 8~1/2!

ur 8~1/2!u
, d3

~N!'
r 8~N11/2!

ur 8~N11/2!u
.

These end-point directors figure importantly in the boundary
conditions in Section IV. The exact procedure for fitting
r (t) to r (0), . . . ,r (N11) is the focus of Section VI B. Once
this fit is done, we scale and reparametrize by arclength to
obtainr (s), 0<s<1, wheres50 corresponds tot51/2 and
s51 corresponds tot5N11/2.

B. Determining a continuous centerline

Fitting r (t) to r (0), . . . ,r (N11) is a standard problem,
often solved by polynomial interpolation or a least-squares
polynomial approximation. Complicating matters, however,
is the fact that for DNA models, the discrete set of points
have irregular short-scale structure and generally smooth
long-scale structure~see Figure 4!. We would like to filter
the small-scale structure, since it will prevent us from imple-
menting long-scale discretization in the continuum problem
~in addition, Figure 4 shows that it is plausible that this
short-scale structure is not important for some long-scale
properties!. Thus, a least-squares approximation is preferable
to interpolation.

We take the originalt interval 0<t<N11 and divide it
into k subintervals~of approximately equal size! and require
that r (t) be a degree-m polynomial on each subinterval. We
also require thatr (t) be C3 over the whole interval
0<t<N11, which imposes 4 continuity conditions~conti-
nuity of r and of its first three derivatives! at each point
where the subintervals meet. Hence, we havek(m11) poly-
nomial coefficients subject to 4(k21) constraints. We then
minimize

FIG. 3. The discrete model vectord3
( j ) is better approximated by the con-

tinuum tangent vector at the midpointr 8( j11/2) than by the continuum
tangent vector at the endpointr 8( j ).

FIG. 4. Long-scale and short-scale structures of a discrete DNA centerline
~08A17!. The upper right shows a side-view of the entire 157 base-pair
molecule with the first 47 base-pairs thickened, and the lower left shows an
end-view of these 47 base-pairs. Despite the irregularity in the short-scale
structure, the long-scale structure appears quite regular.
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(
j50

N11

~r ~ j !2r ~ j !!2

subject to these constraints. This objective function is qua-
dratic in the polynomial coefficients and the constraints are
linear in the coefficients, so this least-squares minimization
can be reduced to a system of linear equations.

This is our basic strategy for obtaining a continuum cen-
terline. However, in practice we find that this method cannot
take DNA data and return a centerline capturing its long-
scale features without including its short-scale irregularities.
For k ~the number of subintervals! or m ~the degree of the
fitting polynomials! small, the long-scale features are not
suitably approximated, and whenk andm are increased to
the point of capturing these long-scale features, the short-
scale irregularities are already present in the approximate
centerline. In short, the raw DNA data are sufficiently
‘‘noisy’’ that the simple least-squares approximation de-
scribed above is not stable with respect to changes ink or
m.

To forcibly remove the small-scale structure, we apply a
filter to the raw data before computing the least-squares ap-
proximation. We replacer ( j ) by a symmetric weighted aver-
age of its neighbors using theFILTFILT function from Mat-
lab’s signal processing toolbox21

r ~ j !→
r ~ j2w11!

w2 1
2r ~ j2w12!

w2 1•••1
~w21!r ~ j21!

w2

1
wr ~ j !

w2 1
~w21!r ~ j11!

w2 1•••1
2r ~ j1w22!

w2

1
r ~ j1w21!

w2 .

Two more technical details are involved in implement-
ing the filter:

~1! Averaging filters naturally have difficulties at inter-
val end points~since there are fewer neighbors over which to
average!. In fact, as the above definition is written, the filter
is not defined for thew21 entries on each end of the inter-
val. TheFILTFILT function actually pads the data on each end
with 3(w21) extra points using a reflection method to
match the values and slopes of the data at the end points, and
then removes these extra points after filtering~see pp. 1–17
of Matlab’s Signal Processing manual21!.

For our study of closed loops of DNA~Section X!,
we have a more suitable padding method available: we
extend each end of the centerline with a piece of the other
end of the centerline, its eventual neighbor in the cyclized
molecule ~we usually use a 50 bp pad on each end!. For
example, we extend the 150-base-pair DNA molecule
(50bp)1(50bp)2(50bp)3 to (50bp)3(50bp)1(50bp)2(50bp)3(50bp)1
and build a padded discrete centerline using the unstressed
angles for the padded DNA sequence. We then applyFILT-

FILT and the least-squares approximation, and then strip the
filtered and fitted centerline back down to its central 150
base-pairs.

~2! An averaging filter tends to straighten out data, de-
creasing long-scale centerline curvature. To remedy this, we
apply the filter to compute an approximate averaged center-
line rav and subtract it from the original data to get a repre-
sentation of the noise in the raw datan[r2rav. We then
apply the filter ton to get nav, and then add back in the
approximate averaged centerlinerav to get our final approxi-
mation to the centerline. Figure 5 illustrates how this modi-
fication improves the quality of the approximation.

C. Determining a continuous field of normal vectors

After we filter the discrete centerline and make a least-
squares approximation to find a continuous centerliner (t),
we reparametrize by arclengths; let sj denote the arclength
parameter value corresponding to the valuet5 j11/2. The
tangent vectors d3(s) can be computed by the
inextensibility-unshearability condition~3.1!

FIG. 5. Double-filtration~cf., Section VI B! of the centerline improves the
fit. The top figure shows a data set and its once-filtered output. The bottom
figure shows the same data set and its double-filtered output. Note that the
straightening effect of the filter is decreased by double filtration. The data
shown here are the projection in they–z plane of the centerline of 08T15
DNA—see Section X.
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d3~s!5
dr ~s!

ds
.

Due to the changes made by the filter and least-squares
approximation, the original discrete set of normal vectors
d1
( j ) will no longer be exactly perpendicular to their corre-
sponding tangent vectorsd3(sj ), which were the best con-
tinuum fit to the originald3

( j ) . Accordingly, we first project
eachd1

( j ) onto the plane perpendicular tod3(sj ), and assign
the result to bed1(sj ). One might worry that this projection
introduces significant errors into the model, but in practice,
the filter and least-squares approximation change the tangent
vectors very little, so the projection step has a minimal ef-
fect.

The crucial difficulty, at least in the DNA application,
is that the normal vectors rotate rapidly about the center-
line, making a full revolution approximately every 10.5
base-pairs. Hence, it is difficult to make an accurate interpo-
lation or least-squares approximation of these normal vec-
tors, since they change appreciably from base-pair to base-
pair. Furthermore, when the centerline is curved and
the normal vectorsd1 spin rapidly, there will be rapid
oscillations in u1 and u2. Consider, for example, a
centerline r (s)5^Rcos(s/R), Rsin(s/R),0& with the corre-
sponding tangent vectorsd3(s)5^2sin(s/R), cos(s/R),0&,
and choose normal vectorsd1(s)5^cos(s/R)cos(gs/R),
sin(s/R)cos(gs/R),2sin(gs/R)&. We can then compute
u2(s)5d38(s)•d1(s)52cos(gs/R)/R, which oscillates rap-
idly for largeg.

Becauseu1(s) andu2(s) vary rapidly ins, it is desirable
to avoid computing with the true DNA frames. Fortunately,
we can compute on a different set of frames which are not
rapidly rotating, and then recover the true DNA resultsana-
lytically from the transformed results. For each value of the

arclengths, we define the transformed directorsD1, D2, and
D3 as a rotation about thed3 axis of the original directors
d1, d2, andd3:

F D1
T~s!

D2
T~s!

D3
T~s!

G5F cos~V~s!! sin~V~s!! 0

2sin~V~s!! cos~V~s!! 0

0 0 1
GF d1T~s!

d2
T~s!

d3
T~s!

G
[M ~s!F d1T~s!

d2
T~s!

d3
T~s!

G . ~6.1!

Here a superscriptT denotes a transpose, so thatdi
T andDi

T

are three-dimensional row vectors. The functionV(s) gives
the angle of rotation~aboutd3(s)) to get the transformed
frame from the original frame~at each arclengths). The
relation ~6.1! is easily inverted

F d1T~s!

d2
T~s!

d3
T~s!

G5MT~s!F D1
T~s!

D2
T~s!

D3
T~s!

G .
We now determine how the strains transform, i.e., cor-

responding to the new set of directorsDi , we have a strain
vectorw which is defined by

Di85w3Di , ~6.2!

and we want to relatew to u. We compute directly

F ~D1
T!8

~D2
T!8

~D3
T!8

G5V8F 2sin V cosV 0

2cosV 2sin V 0

0 0 0
GF d1Td2T

d3
T
G1F cosV sin V 0

2sin V cosV 0

0 0 1
GF ~d1

T!8

~d2
T!8

~d3
T!8

G5V8F 2sin V cosV 0

2cosV 2sin V 0

0 0 0
G

3F cosV 2sin V 0

sin V cosV 0

0 0 1
GF D1

T

D2
T

D3
T
G1F cosV sin V 0

2sin V cosV 0

0 0 1
GF 0 u3 2u2

2u3 0 u1

u2 2u1 0
GF d1Td2T

d3
T
G

5F 0 V8 0

2V8 0 0

0 0 0
GF D1

T

D2
T

D3
T
G1F cosV sin V 0

2sin V cosV 0

0 0 1
GF 0 u3 2u2

2u3 0 u1

u2 2u1 0
GF cosV 2sin V 0

sin V cosV 0

0 0 1
GF D1

T

D2
T

D3
T
G

5F 0 u31V8 u1 sin V2u2 cosV

2u32V8 0 u1 cosV1u2 sin V

2u1sin V1u2 cosV 2u1 cosV2u2 sin V 0
GF D1

T

D2
T

D3
T

.G ~6.3!
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Comparing to Eq.~6.2!, we see that

w15u1 cosV1u2 sin V,

w252u1 sin V1u2 cosV, w35u31V8,

or

Fw1

w2

w3

G5MF u1

u2

u31V8
G ,

which implies

F u1u2
u3
G5MTF w1

w2

w32V8
G .

Similarly, the unstressed strains transform as

F ŵ1

ŵ2

ŵ3

G5MF û1

û2

û31V8
G , F û1û2

û3
G5MTF ŵ1

ŵ2

ŵ32V8
G .

In the case thatK25K1, this transformation of directors
preserves the form of the Lagrangian, which is critical for the
computations described in Section IV

L5
K1

2
~u12û1!

21
K1

2
~u22û2!

21
K3

2
~u32û3!

2

5
K1

2 F u12û1

u22û2

u32û3
G •F u12û1

u22û2

u32û3
G1

K32K1

2
~u32û3!

2

5
K1

2 S MTFw12ŵ1

w22ŵ2

w32ŵ3

G D •S MTFw12ŵ1

w22ŵ2

w32ŵ3

G D
1
K32K1

2
~w32V82~ŵ32V8!!2

5
K1

2 Fw12ŵ1

w22ŵ2

w32ŵ3

G •Fw12ŵ1

w22ŵ2

w32ŵ3

G
1
K32K1

2
~w32ŵ3!

2 ~sinceMM T5I !

5
K1

2
~w12ŵ1!

21
K1

2
~w22ŵ2!

21
K3

2
~w32ŵ3!

2.

~6.4!

For the discrete data we are using,Ku5Kf , which implies
thatK25K1. Even if K2 Þ K1, it is possible that the rapid
twist of the normal vectors will average the bend stiffnesses
and give an effective isotropic rod, with (K2)eff5(K1)eff .
Rigorous justification of this claim is still an open question,
although numerical evidence suggests it to be true
~see the Web site http://www.lcvm.umd.edu/;kehrbaum/
research.html!. In fact, it is likely in real DNA thatKu

Þ Kf ,
15 so that the experimentally determinedKu5Kf in the

discrete model really are the effective isotropic stiffnesses of
the rapidly twisting DNA.

Since the Lagrangian has the same form for the trans-
formed directors as for the original directors, the Hamil-
tonian also maintains the same form, so our computations
will involve solving the same system of differential equa-
tions ~4.9!. The only change is in the boundary conditions.
Specifically, the angle between the transformed directors
D1(0) andD1(1), is not thesame as the angle between the
original directorsd1(0) andd1(1). By Eq.~6.1!, D1(0) is a
right-handed rotation ofd1(0) by an angleV(0) about
d3(0)5e3. Similarly, D1(1) is a rotation ofd1(1) by an
angleV(1) aboutd3(1)5e3. Also, the boundary conditions
~4.11! imply thatD1(1) is a right-handed rotation ofD1(0)
by an anglea aboute3. Together, these imply that the angle
betweend1(0) andd1(1) is a2(V(1)2V(0)). If we want
the original frame to be closed, i.e.,d1(0)5d1(1), weneed
a5V(1)2V(0) ~mod 2p).

D. The natural frame

We choose the transformed directors to be those of the
natural frame.22 Given a centerliner (s), the natural frame is
an untwisted frame (D1 ,D2 ,D3) defined by a choice of
D1(0) and the condition

ŵ350. ~6.5!

Equation~6.5!, combined with Eqs.~3.2!, ~3.3!, and ~3.4!,
implies that

D185~ŵ1D11ŵ2D2!3D152ŵ2D352~D38•D1!D3

52$D3@D38#T%D1 . ~6.6!

This is a first-order linear differential equation for the
3-vectorD1; given the centerliner (s), the tangent vectors
D3(s)5d3(s) are determined by condition~3.1!, so once an
initial normal vectorD1(0) is chosen, Eq.~6.6! can be
solved numerically with an initial value problem solver to
findD1(s). @In practice, we solve Eq.~6.6! with a sixth order
hybrid Gear routine23 and monitor the normalization ofD1

and its perpendicularity toD3 to check the accuracy of the
solution#.

VII. CONTINUUM ROD COMPUTATIONS

For the remainder of this paper, we focus on the problem
of computing the lowest-energy equilibrium configuration of
a continuum rod. We first summarize the implementation of
the procedure described in Sections V and VI to compute
Ki , ŵi , andV(s) given wedge-angle model parameters~re-
call from Section VI C thatŵi andV(s) together determine
ûi).

Given a DNA base-pair sequence, we pad the sequence
on both ends and then use the chosen set of unstressed angles
~e.g., Trifonov or De Santis! to build a discrete unstressed
shape with centerliner ( j ) and normal vectorsd1

( j ) . The cen-
terline is double-filtered and a least-squares approximation
then givesr (t) as described in Section VI B; to distinguish
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r (t) from the scaled and arclength-parametrized centerline
that is our ultimate goal, we relabel it asr̄ (t). The arclength
functions is defined as usual by

s~t![E
0

tU dr̄dt ~ t !Udt,
whose inverse function we denote byt(s); it is straightfor-
ward to determine boths(t) andt(s) numerically. We de-
note the total arclength ofr̄ by l . Also, let s init andsfinal

denote the values ofs at the ends of the true molecule
~within the padded centerline!, and definesinit[s init /l ,
sfinal[sfinal /l .

The scaled and arclength-parametrized centerline is then
defined by

r ~s![
1

l
r̄ ~t~ l s!!.

Using the fact that

dt

ds
~ l s!5

1

U dr̄dt ~t~ l s!!U ,
it then follows from the chain rule that

d3~s!5
dr

ds
~s!5

dr̄

dt

U dr̄dt U
,

d38~s!5
d2r

ds2
~s!5l

U dr̄dt U
2d2r̄

dt2
2S dr̄dt • d

2r̄

dt2 D dr̄dt
U dr̄dt U

4 ,

where all derivatives ofr̄ are evaluated att(l s). Having
computedd3 and d38 , it is then possible to compute the
natural-frame normal vectorsD1 from Eq. ~6.6! using the
fact thatD35d3. FromD1(s) we then compute the function
V(s) which records the angle of rotation betweenD1 and the
true DNA normal vectorsd1

( j ) . By the definition of the natu-
ral frame,ŵ350, andŵ1 andŵ2, the unstressed strains with
respect to the natural frame, can be computed using Eq.
~3.4!. Although ŵ1 and ŵ2 are thus determined for the pad-
ded molecule, it is routine to obtain their values for the true
molecule: the unpadded centerline and normal vectors are
given by

runpadded~s!5
rpadded~sinit1s~sfinal2sinit!!

sfinal2sinit
,

d1,unpadded~s!5d1,padded~sinit1s~sfinal2sinit!!

(r must be rescaled in order forur 8u51), and it is easy to
verify that

ŵ1,unpadded~s!5~sfinal2sinit!ŵ1,padded~s!,

ŵ2,unpadded~s!5~sfinal2sinit!ŵ2,padded~s!.

Theseŵi are inserted forûi into the right-hand side of
Eq. ~4.9! along with K15Ku /N, K25Kf /N, and
K35Kt /N, and we then seek the lowest-energy solution of
the BVP @Eq. ~4.9!1~4.11!# with a5V(1)2V(0) ~mod
2p) ~as discussed in Section VI C!. An efficient computa-
tional approach to this problem is parameter-continuation.
Specifically, we use the packageAUTO;24 given a known so-
lution of a parameter-dependent BVP,AUTO computes a
family of solutions as a parameter~either in the differential
equations or in the boundary conditions! is varied. For ex-
ample, starting from the closed-form solution~4.12! to the
perfect problem (K15K2, ŵi50), one can vary the imposed
twist anglea to sweep out an intricately connected family of
solutions.12,13 For another recent use of numerical continua-
tion in rod computations based upon a collocation discreti-
zation ~as in AUTO!, see Mahadevan and Keller,25 where
Mobius-band equilibria for intrinsically straight rods with
rectangular cross-sections are computed beginning with a
known solution for the circular cross-section case.

A piece of the set of solutions to the perfect problem is
shown in Figure 6, in which the energy and local twist
m3(0) are plotted for each solution; we call this set theper-
fect bifurcation diagram. Our focus here, however, is on
computing equilibria for intrinsically curved rods, with
ŵ1 ,ŵ2 Þ 0 ~an imperfect problem!. There are some intrica-
cies associated with numerically breaking the perfect rod’s
symmetry, and we follow the procedure described in detail
by Li and Maddocks,13 Section VI. We introduce a homo-
topy parameterg into the differential equations~4.9!, replac-
ing every instance ofŵi(s) with gŵi(s). Accordingly,
g50 corresponds to the perfect problem, for which Eq.
~4.12! is known to be a solution, andg51 corresponds to the
imperfect problem of interest. Starting from Eq.~4.12! for
some value ofa5a0, we useAUTO to increaseg from 0 to

FIG. 6. Section of the perfect bifurcation diagram. Each point represents an
equilibrium twisted ring for an intrinsically straight and untwisted rod with
equal bending stiffnesses. As the imposed twist is varied, we get the intri-
cate pattern of equilibrium solutions shown here; the energy and twist
m3(0) of each equilibrium are plotted~for the particular case
K15K25RT/((158)(0.00734)),K351.5K1 corresponding to the 158-base-
pair DNA molecule 11T15 described in Section X!.
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1 ~while holding a fixed! and then switch parameters to
sweep out the imperfect diagram by varyinga ~while hold-
ing g fixed!. In contrast to the connected perfect diagram
~Figure 6!, the imperfect diagram contains many~apparently
infinitely many! components; the component traced out by
AUTO depends on the value ofa0 chosen. Also, recall that of

the solutions on the imperfect diagram, only those with
a5V(1)2V(0) ~mod 2p) have the normal-vector field
d1(s) close up on itself and thus represent cyclized DNA.

One component of an imperfect diagram is shown in
Figure 7; the two solutions for whicha5V(1)2V(0) ~mod
2p) are marked by circles, and the corresponding rod con-
figurations are shown in Figures 8 and 9. This component
was computed usinga0'0 (a050 is a degenerate point
from which numerical continuation is not possible!. It is a
clear descendant of the lowest-energy cycle in the perfect
diagram shown in Figure 6. This lowest-energy cycle in the
perfect diagram actually splits into two components in the
imperfect problem,13 but we find in our applications that the
other descendant lies at a higher energy than the component
shown in Figure 7. With an apparent infinity of connected
components to the imperfect diagram, we cannot be com-
pletely assured of finding the lowest-energy branch, but we
take the ancestry from the perfect diagram, and experimen-
tation with variousa0, as evidence that thea0'0 compo-
nent shown in Figure 7 contains the lowest-energy equilib-
rium configuration.

Having found a minimum-energy equilibrium for one
value of K3 /K1, one can easily generate minimum-energy
equilibria for otherK3 /K1 by freezing a and declaring
K3 /K1 to be the active continuation parameter inAUTO. This
fact is a significant benefit of the computational technique of
parameter continuation.

VIII. NUMERICAL ROBUSTNESS OF CONTINUUM
COMPUTATIONS

Section VI describes a procedure for determining con-
tinuum rod parameters from given discrete rod parameters,
but within this procedure there are still several choices: the
filter window-widthw used in smoothing the discrete data,
and the number of subintervalsk and polynomial degreem
used in the least-squares approximation to the resulting
shape. In this section, we discuss how sensitive the compu-
tational results are to these choices. The goal, of course, is

FIG. 7. Component of the bifurcation diagram for an imperfect rod model-
ing the DNA molecule 11T15. This component is a perturbation of the
lowest-energy cycle in the perfect diagram. The large intrinsic bend of the
unstressed rod~about 110°) allows the energies in this component of the
imperfect diagram to be lower than those of the perfect rod, since less
bending in addition to the unstressed curvature needs to occur in order to
form a cycle. The solutions whose normal-vector fields close on themselves
are marked with circles. As in Figure 6, we takeK15K25RT/((158)
3(0.00734)) andK351.5K1.

FIG. 8. Configuration of the rod equilibrium corresponding to the lower-
energy circle in the bifurcation diagram of Figure 7. The rod centerline is
indicated by a tube and the normal-vectors by a ribbon. The top figure
shows the original normal vectors, which track the sugar–phosphate chains.
The bottom figure shows the natural-frame normal vectors used in the com-
putations~which are not periodic for this configuration!.

FIG. 9. Configuration of the rod equilibrium corresponding to the higher-
energy circle in the bifurcation diagram of Figure 7. Interpretations are as in
Figure 8.
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that the final computations not depend significantly on the
choices made, and within fairly wide limits this is indeed the
case. A subtle aspect of this problem, at least for the DNA
discrete data we have used, is that visually assessing the
quality of the long-scale structure of the centerline is not a
sufficient check of the stability of a model. Most procedures
we investigated, even those which used interpolation instead
of least-squares approximation, or did not include the en-
hancements described in Section VI B, produced continuous
centerlines which appeared to be reasonable fits to the dis-
crete centerline. The crucial point is the stability of thecur-
vaturesof the centerline, since the boundary-value problem
for the continuous rod involves the parametersûi , which
depend on the centerline curvatures~and the rotation of the
normal vectors!.

We took a 155-base-pair DNA molecule~08T15 as de-
scribed in Section X! and variedw from 5 to 25,k from 10
to 20, andm from 4 to 6. For each triple (w,k,m), we pro-
duced a plot of the energy of the lowest-energy cyclized rod
versus the ratioK3 /K1 ~as described in Section X, this is the
central computation for comparison with experiment!. As
shown in Figure 10, when we varyw, k, andm over the
ranges described above, the computed energies change by at
most 0.1RT, which is approximately a 1% variation and is
well within the experimental error in energy determination,
which is estimated at 0.7RT ~see Crotherset al.26 and Sec-
tion X!. We also remark that this energy variation is mark-
edly smaller than that which we observed for other discrete-
to-continuous procedures, e.g., if interpolation is used
instead of a least-squares approximation, or if a least-squares
approximation is used without a filter.

In addition to model parameters, one must choose pa-
rameters for the numerical discretization.AUTO implements
collocation, which subdivides the arclength intoK subinter-
vals and approximates solutions by continuous piecewise-
polynomials of degreeM on this mesh of subintervals. For
most computations we usedK530 andM56 but have veri-
fied that computed energies vary by at most 0.01RT, or
0.1%, in the range 15,K,60 and 4,M,6. In particular,
the model errors described above~and the experimental er-
rors mentioned in Section X! dominate these discretization
errors by an order of magnitude.

IX. COMPARISON OF CONTINUUM AND DISCRETE
EQUILIBRIA

As one test of the accuracy of the continuum computa-
tions described in Section VII, we compare the computed
continuous configurations and energies to the equilibrium
configurations and energies of the original discrete problem
which provided input parameters to the continuum rod
model. As shown in Section IV A, determining discrete equi-
libria requires solution of the large nonlinear system~4.6!,
which necessitates a numerical iteration. Fortunately, a good
initial guess for the discrete iteration can be extracted from
the associated continuum solution. The determination of a

discrete configuration is essentially an inversion of the deri-
vation described in Section VI of the continuum shape from
the discrete shape.

Given the continuum rodr (s) andd1(s), 0,s,1, we
recover the positions of the base-pair centers by sampling
evenly alongr (s)

r ~0!5r ~N!5r S 2N21

2N D ,
r ~ i !5r S 2i21

2N D , i51, . . . ,N21.

FIG. 10. Variation of computed energies with changes in filtering and fitting
parameters for converting from the discrete to the continuum representation.
In the top plot, the filter width is held fixed atw515 and the fitting param-
eters (k,m) are varied. Except for (k,m)5(10,4), which is probably too few
polynomials of too low a degree, the energy variation is less than 0.05RT, or
0.5%. In the bottom plot, the fitting parameters are held fixed at
(k,m)5(20,6) and the filter widthw is varied. Here,w55 appears to be too
narrow a filter window, but the other choices again yield an energy variation
of approximately 0.05RT.
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Notice the shift by arclengths521/(2N) in accord with the
alignment issues discussed in Section VI A. Thed3 vectors
are now given by the requirement that they extend from one
base-pair center to the next

d3
~ i !5r ~ i11!2r ~ i !, j50,1, . . . ,N21,

d3
~N!5d3

~0! .

Finally, the d1 vectors are recovered by sampling evenly
alongd1(s), but now without the shift in arclength, again in
accord with the alignment issues discussed in Section VI A

d1
~ i !5d1S iND , i50,1, . . . ,N.

The vectorsd3
( i ) should be approximately of length 1/N, and

we should have approximate orthogonality betweend3
( i ) and

d1
( i ) . We next projectd1

( i ) onto the plane perpendicular to
d3
( i ) ~to obtain exact orthogonality! and then rescaled1

( i ) and
d3
( i ) to have length one to complete the reconstruction of the
discrete configuration~projectingd1

( i ) will change its length,
so we restore its normalization at this point!. Note that nor-
malizingd3

( i ) will change ther ( i ), but that is immaterial since
solution of the discrete problem only involves relative rota-
tion angles.

From the discrete frames, the relative rotation matrices
are determined from Eq.~2.2!

R~ i !5F ~d1
~ i !!T

~d2
~ i !!T

~d3
~ i !!T

G @d1
~ i11! d2

~ i11! d3
~ i11!#

and then angles can be determined using Eq.~2.1!

u~ i !52arcsin~R~3,2!
~ i ! !,

f~ i !52arcsin~R~3,1!
~ i ! /cosu~ i !!,

t~ i !52arcsin~R~1,2!
~ i ! /cosu~ i !!.

These angles are then used as an initial guess in the solution
of Eq. ~4.6! using the constrained minimization function
CONSTRin Matlab’s Optimization Toolbox.27

We made this comparison for the 11 DNA molecules
studied in Section X with Trifonov II unstressed angles~see
Section X! and stiffnessesKu5Kf51 andKt51.5 ~the ab-
solute energy scaling is immaterial to the computations, so
Ku51 is chosen purely for convenience!. The lowest-energy
continuum configurations are computed as described in Sec-
tion VII. Then, starting with the initial guess supplied by the
continuum solution, each discrete constrained minimum was
found in approximately 15 to 90 min on a Dec Alpha 3000
~the variation in run times is perhaps an indication of the
sensitivity of the constrained minimization computation to
the initial guess!. The discrete and continuous energies agree
to within 0.5%; see Table II. The discrete and continuum
configurations for the molecule 12A09 are superimposed in
Figure 11.

In our experience, solution of the discrete problem~4.6!
without the initial guess provided by the continuum solution

is difficult. If the initial guess is chosen to be the planar
untwisted solution~4.7! or the unstressed shape, theCONSTR

function fails to converge. Indeed, the convergence of the
discrete iteration appears to be directly attributable to the
accuracy of the initial guess derived from the continuum
solution.

In addition, we have tried to solve Eq.~4.6! with param-
eter continuation~usingAUTO! starting with the known un-
twisted planar solution~4.7! and with a homotopy parameter
g in the unstressed angles. However, this numerical continu-
ation was not successful, perhaps because the rapid twist of
the unstressed DNA is too different from the untwisted start-
ing point. It is possible that if one could find a known solu-
tion with comparable twist, one could compute nearby dis-
crete equilibria by parameter continuation, but our
experience has been that parameter continuation within the
wedge-angle model is impracticable.

TABLE II. Discrete and continuum energies for lowest-energy equilibrium
rings, with Trifonov II angles~see Section X! and Ku5Kf51, and
Kt51.5. The rms deviation between base-pair centers in the continuous and
discrete equilibrium configurations is also given.

rms configuration
No. Name Edisc Econt % Difference difference~Å!

9 12A09 0.10746 0.10740 0.05 0.59
10 09T09 0.11701 0.11714 0.11 0.64
8 13A09 0.09469 0.09457 0.13 0.58
11 17A11 0.09682 0.09654 0.29 0.63
1 11A17 0.09860 0.09817 0.43 0.58
7 15A09 0.08305 0.08280 0.30 0.58
4 11T15 0.07732 0.07730 0.03 0.61
2 09A17 0.07976 0.07947 0.36 0.58
3 08A17 0.07414 0.07390 0.32 0.59
6 08T15 0.07501 0.07487 0.22 0.61
5 09T15 0.07292 0.07284 0.11 0.60

FIG. 11. Discrete and continuous equilibrium configurations for the 12A09
DNA molecule using Trifonov II angles~see Section X!. The sugar-
phosphate helices are reconstructed from the computed centerlinesr and
frames (d1 ,d2 ,d3) using the idealized B-DNA coordinates: helix1
5r12.521d220.769d1, helix25r22.521d220.769d1. The discrete
helices are shown with spheres and the continuous helices with tubes.
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X. APPLICATION: DNA CYCLIZATION

We modeled 11 DNA molecules with lengths ranging
from 150 to 160 base-pairs, whose experimental cyclization
probabilities span three orders of magnitude.28 All the mol-
ecules contain, in sequence, the following segments:

~1! a PCR segment~essentially straight; a vestige of a poly-
merase chain reaction~PCR! primer!,

~2! a CAP-binding site~bent by'10°; a site where catabo-
lite activator protein~CAP! can bind!,

~3! adaptor II~essentially straight!,
~4! a sequence of 6 A-tracts~total bend'108°),
~5! adaptor I~essentially straight!.

Although the DNA contains a CAP-binding site, no protein-
binding is involved in this article. The effect of CAP binding
on these molecules is investigated with experiments and
Monte Carlo computations in Kahn and Crothers;28 a con-
tinuum model incorporating protein-binding is a subject of
future study.

Some molecules have the A-tract adenines on the oppo-
site strand from the others; these two types are distinguished
by labeling the molecules as ‘‘A’’ or ‘‘T.’’ The molecules
are also distinguished by different lengths of adaptor I and
adaptor II. Following the notation in Kahn and Crothers,28

the principal 5 DNA molecules are labeled by their adaptor
lengths and their A-tract orientation: 11A17, 11T15, 15A09,
09T09, and 17A11; the first number is the length of adaptor
I and the second that of adaptor II. In addition, to study the
effects of overall sequence length, shorter versions of some
of these molecules were made by removing 2 or 3 base-pairs
from the PCR segment to form what we call 09A17, 08A17
~from 11A17!, 09T15, 08T15~from 11T15!, and 13A09,
12A09 ~from 15A09!. Note that these names are somewhat
misleading in that it is not the adaptor segment but rather the
PCR segment that has been shortened, via synthesis using
PCR primers bearing 2 or 3 nucleotide deletions relative to
the principal molecules. Due to a mutation, the 17A11
sample used in the experiment was actually missing a base-
pair from one of its A-tracts; this change was included in all
computations. Detailed structures and experimental informa-
tion can be found in Kahn and Crothers.8,28

Experimental studies using T4 DNA ligase-mediated
trapping of apposed DNA ends26,29,30do not directly measure
the probabilities of cyclization, but rather the rate constants
(kc ,kd) for cyclization and dimerization~the bonding of one
molecule’s 58 end to another molecule’s 38 end to form a
DNA dimer!. These in turn can be related to the equilibrium
constants (Kc ,Kd) for cyclization and dimerization26,30 by

kc /kd5Kc /Kd .

This quantity is defined to be the Jacobsen–Stockmayer fac-
tor J:31

J[Kc /Kd .

A useful interpretation is to think ofJ as ‘‘the molar DNA
concentration required to cause bimolecular joining to occur

at the same rate as the corresponding cyclization reaction.’’26

Standard statistical mechanical expressions for the equilib-
rium constantsKc andKd give

32

J5 expF2
DGc

02DGd
0

RT G ,
where DGc

0 and DGd
0 are the standard molar free energy

changes in the cyclization and dimerization reactions. Hence,
the quantity

DGexp[DGc
02DGd

05DHc
02TDSc

02~DHd
02TDSd

0!

~10.1!
can be experimentally determined. We focus first on the en-
thalpy contribution. The termDHd

0 is the enthalpy for the
new chemical bonds at the 58–38 connection. The term
DHc

0 contains the same enthalpy of the 58–38 connection,
and also the enthalpy change due to the rearranged molecular
shape in cyclization. The enthalpy from the new bonds will
cancel in the differenceDHexp[DHc

02DHd
0 to leave only the

enthalpy change due to the rearranged cyclized shape; it is
exactly this enthalpy changeDHexp which should be well-
approximated by the strain energies in the rod model.

Accordingly, we can compare the experimentally deter-
mined J factors with strain energies computed in our con-
tinuum rod model. There are two important points to con-
sider in making this comparison. First, the experimentally
determinedJ factors, since they involvefree energies, will
contain entropy contributions not computed in the continuum
model. Second, experimental difficulties imply thatrelative
J factors among a set of molecules are generally more reli-
able than the absoluteJ factors.26

The discrete bending stiffnesses were taken to be

Ku5Kf5
RT

l /P

with a helix-rise-per-base-pairl53.431028 cm and persis-
tence lengthP546331028 cm, to match the values used in
associated Monte Carlo studies.28 The Monte Carlo study
took Kt'1.5Ku , but we investigated the entire range
0.5,Kt /Ku'K3 /K1,1.5 since various values in this range
are reported in the literature.1 The parameter-continuation
techniques we employ make it particularly easy to compute
the entire range of these solutions. For those more
familiar with the notation used in Schlick,1 the
range 0.5,K3 /K1,1.5 corresponds to a range of ‘‘tor-
sional moduli’’ C of 0.9–2.8310219 erg cm ~where
C5Ktl /NAv , with NAv5 Avogadro’s number!.

The unstressed shape of each discrete molecule was
computed for each of three different sets of equilibrium
wedge angles, namely Trifonov,9 De Santis,10 and a set of
adapted Trifonov angles we call Trifonov II. Trifonov II
angles were determined in the Monte Carlo study28 to better
match recent experimental data. The modifications are: first,
the t̂ values for different base-pair stacks are replaced with a
single value of 34.45°, to match the helical repeat of 10.45
seen in studies of the periodicity of cyclization probability
with varying DNA sequence length;30 second,t̂534.85° is
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used in the A-tracts to match the helical repeat of 10.33
found in Crotherset al.;26 finally, the Trifonov anglesû and
f̂ are scaled by 0.61 to account for recent cyclization kinetic
studies33 indicating that the bending angle in the particular
A-tract sequence used is approximately 18° rather than the
30° predicted by Trifonov angles.

From these discrete parameters, continuum computations
of the lowest-energy equilibria were made for each of the
three sets of unstressed angles. For each molecule, starting
from discrete wedge-angles, it takes approximately 15 min
on a Dec Alpha 3000 to generate equilibrium energies and
configurations for 16 different values ofK3 /K1: 5 min to
determine continuum parameters from the base-pair se-
quence, 5 min to determine an equilibrium solution for an
initial value ofK3 /K1, and about 15 s for each subsequent
value ofK3 /K1. Figures 12, 13, and 14 show our computed
cyclization strain energiesDEmodel,i , i51, . . . ,11 for each of
the 11 DNA strands plotted againstK3 /K1. In addition, by
computing an appropriate Hessian, we have verified that
these equilibria generate local minima of the discrete prob-
lem, and thus are likely to be the configurations realized in
experiments. Interestingly, for some molecules and some
values of K3 /K1, both continuum solutions on the low-
energy branch of the imperfect diagram generate discrete
configurations which are local minima; investigation of this
phenomenon is ongoing.

We can offer a heuristic explanation for the different
cyclization probabilities of these molecules and the effect of
varyingK3 /K1. According to the bend phasing described in
Table III, the A17 and T15 molecules are approximately
C-shaped, while A09, T09, and A11 molecules are approxi-
mately S-shaped. The C-shaped molecules tend to cyclize
readily; however, in order for the S-shaped molecules to
close their centerlines, they must either~a! twist to rephase

their bends or~b! bend against their intrinsic curvature. Fig-
ure 15 plots the bending contribution

E
0

1F12K1~u1~s!2û1~s!!21
1

2
K2~u2~s!2û2~s!!2Gds

to the continuum energy~3.5!; the higher bending energies
of the A09, T09, and A11 molecules suggest that mechanism
~b! dominates in their cyclization. For molecules with two
large bends, such as CAP-bound S-shaped molecules,
mechanism~a! seems more likely.

Another important effect is the additional twisting en-
ergy required to align the sugar–phosphate chains once the
centerline is closed. Figure 16 plots the twist contribution

FIG. 12. Continuum model strain energies of the 11 DNA molecules in
Table III for various values ofK3 /K1 ~ratio of twist to bend stiffness!, using
Trifonov angles for the unstressed shape. When two or more strands are
listed on one line at the right edge of the graph, the one with the higher
energy atK3 /K151.5 is listed first.

FIG. 13. Continuum model strain energies, using De Santis angles for the
unstressed shape. Notation and curve labeling are as in Figure 12.

FIG. 14. Continuum model strain energies, using Trifonov II angles for the
unstressed shape. Notation and curve labeling are as in Figure 12.
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E
0

1F12K3~u3~s!2û3~s!!2Gds
to the continuum energy~3.5!, which correlates well with the
torsional phasings from Table III. The cycles which contain
significant twist energy are generally more sensitive to the
value ofK3 /K1, as shown by Figure 16. In summary, the
ordering of the 11 cyclization rates can be explained to a first
approximation by considering bend phasing and torsional
phasing; however, in reality, cyclization involves a competi-

tion between twisting and bending, whose balance depends
on the detailed unstressed shape and stiffnesses, as shown by
the variation of the energies withK3 /K1.

Table III reports the experimental cyclization free ener-
gies DGexp,i , i51, . . . ,11 ~with experimental error of ap-
proximately60.7RT). A few conclusions are immediately
apparent. First, for all three sets of angles, the ordering of the
DEmodel,i matches the ordering of theDGexp,i , taking into
account the experimental error in theDGexp,i . Even though
the Trifonov and De Santis angles are quite different~see
Table I!, their computed energies are qualitatively similar,

TABLE III. The DNA molecules: numbered as in Figures 12–19 and ranked according to their experimental free energies~Ref. 28!. The torsional phasing
gives the total number of turns of the sugar–phosphate chain, assuming 10.33 bp/turn in the A-tracts and 10.45 bp/turn elsewhere~Ref. 28!. The bend phasing
gives the total number of turns between the center of the CAP site bend to the center of the first A-tract; when this phase is an integer, the two bends~CAP
site and A-tracts! are in phase, so they form a C-shaped molecule. Also shown are the discrepancies of various computed free energies from the experimental
results; all computations are forK3 /K15Kt /Ku51.5. The three continuum computations use parameters derived from different sets of unstressed wedge-
angles, as described in Section X. These continuum computations also include fitting with a parameter~whose best-fit value is given in the last line! to include
a constant free-energy-shift due to entropy.

(DGexp2DGmodel)/RT

Torsional Bend Monte Continuum Continuum Continuum
No. Name phasing phasing DGexp/RT Carlo Trifonov II Trifonov De Santis

9 12A09 14.7 4.3 21.0 0.4 0.6 23.0 0.1
10 09T09 14.4 4.3 21.0 1.0 20.5 1.4 20.2
8 13A09 14.8 4.3 20.1 1.0 1.8 0.0 0.2
11 17A11 15.4 4.5 19.1 0.1 0.7 1.9 23.0
1 11A17 15.4 5.1 17.9 0.4 20.9 0.9 20.6
7 15A09 15.0 4.3 17.2 20.3 0.5 20.6 20.4
4 11T15 15.2 4.9 16.2 0.8 0.3 1.4 0.6
2 09A17 15.2 5.1 15.7 20.2 20.5 0.4 0.4
3 08A17 15.1 5.1 15.0 20.8 20.5 0.2 0.4
6 08T15 14.9 4.9 14.8 20.8 20.8 21.7 1.4
5 09T15 15.0 4.9 14.7 20.4 20.6 20.8 1.1

DS determined in least-squares fit N/A 5.2R 5.8R 6.1R

FIG. 15. Bending contribution to the continuum model strain energies, us-
ing Trifonov II angles for the unstressed shape. Notation and curve labeling
are as in Figure 12.

FIG. 16. Twisting contribution to the continuum model strain energies,
using Trifonov II angles for the unstressed shape. Notation and curve label-
ing are as in Figure 12.

5643Manning, Maddocks, and Kahn: Continuum rod model of DNA

J. Chem. Phys., Vol. 105, No. 13, 1 October 1996

Downloaded 29 Mar 2013 to 165.82.168.47. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions



perhaps because A-tracts figured importantly in their training
sets.

In addition, the computed energies are uniformly lower
than the experimental energies. Given the accurate energy
computations in Section IX, this systematic inaccuracy is
unlikely to be an error in the continuum computations, but is
more likely due to the absence of entropic contributions in
the elastic model. From Eq.~10.1!, the entropic contribution
to DGexp is TDSd

02TDSc
0 We can estimate this contribution

with the following heuristic argument: each linear molecule
has significant entropy, but for the short molecules consid-
ered here, the cyclized configuration has essentially zero
configurational entropy; hence,2TDSc

0'TSlinear. Further-
more, dimerization leads to a decrease in translational and
rotational entropy. In any event, detailed entropy computa-
tions are outside the scope of this article, so we merely as-
sume that the entropy contribution to free energy is the same
for all 11 molecules~since they are of similar length and
shape!. Accordingly, we assume a uniform shift to compute
free energies from the continuum strain energies:
DGmodel,i5DEmodel,i1TDS, for TDS independent ofi . We
treatTDS as a free parameter, whose value is determined to
give the best least-squares fit~at each value ofK3 /K1) be-
tween the 11 computedDGmodel,i and experimental
DGexp,i . The results of this best fit are shown in Figures 17,
18, and 19. The entropy shifts used varied from 5.2R to
8.6R, depending on the value ofK3 /K1 and the angle set,
with the values further described in the figure captions.

Of course, this cannot be taken as a true computation of
TDS or as a true quantitative comparison of the rod compu-
tations to experiment; we merely assert that it is plausible
that the elastic rod computations model the experiment accu-
rately. Moreover, Table II shows that the continuum compu-
tations compute the exact equilibrium wedge-angle internal
energy to within 0.05RT (0.5% error!, so the discrepancies

between continuum predictions and experiment in Figures
17, 18, and 19 must instead be due to experimental error,
inaccuracies in the wedge-angle model, or the incorrectness
of our assumption of a constant free-energy shift due to en-
tropy.

Finally, we compare our continuum equilibrium energies
to Monte Carlo computations on the same DNA molecules.
Monte Carlo simulations, which build DNA configurations
with probabilities weighted by the discrete energies of those
configurations, can simulate the actual fluctuations of the
DNA molecule, and counting the resulting configurations
which satisfy the ring-closure constraint~to within a toler-

FIG. 17. Difference between experimental and rod model free energies for
Trifonov angles, with energy shift due to entropy contribution included as a
free parameter~the best-fitDS varies from 7.5R at K3 /K150.5 to 5.8R at
K3 /K151.5). Curve labeling is as in Figure 12.

FIG. 18. Difference between experimental and rod model free energies for
De Santis angles, with energy shift due to entropy contribution included as
a free parameter~the best-fitDS varies from 8.6R atK3 /K150.5 to 6.1R at
K3 /K151.5). Curve labeling is as in Figure 12.

FIG. 19. Difference between experimental and rod model free energies for
Trifonov II angles, with energy shift due to entropy contribution included as
a free parameter~the best fitDS varies from 6.5R atK3 /K150.5 to 6.1R at
K3 /K155.2). Curve labeling is as in Figure 12.
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ance! can be used to determine the ring-closure
probability.26,28,32,34This approach has been successful in re-
producing cyclization free energies~including the entropic
contribution! determined by experiment.28 However, it is a
computationally intensive procedure, which samples ap-
proximately 1010 configurations to get stable cyclization
probabilities for some molecules~those which cyclize with
low, but experimentally accessible, probability! and requires
about 12 h on a Dec Alpha. For exploring highly strained
molecules such as supercoils or for scanning through param-
eter space~especially for more complicated DNA geometries
like those including multiple protein-induced bends!, the
Monte Carlo method may become prohibitively time-
consuming.

Ring-closure probabilities, including entropic effects,
have also been studied with statistical mechanical theories of
‘‘wormlike chains.’’ For example, Shimada and
Yamakawa35 compute DNA ring-closure probabilities using
a wormlike chain theory with twisted but straight unstressed
shape; Hagerman and Ramadevi36 show that Monte Carlo
results match the Shimada and Yamakawa computations for
short ~less than 500 bp! DNA molecules.

We compare in Table III the differences between com-
puted and experimental free energies for all the methods de-
scribed here: Monte Carlo using Trifonov II angles28 and the
continuum rod computations using Trifonov, De Santis, and
Trifonov II angles. All computations are for
K3 /K1'Kt /Ku51.5, since that is the value used in the
Monte Carlo simulations, and parameter continuation of
Monte Carlo results is not possible. The improvement of the
Trifonov II angles over the original Trifonov angles is clear,
and the De Santis results are quite close to experiment with
the exception of the outlying 17A11 molecule.

A comparison of the Monte Carlo and the continuum
Trifonov II results shows that, especially for the best cycliz-
ers, which have the smallest Monte Carlo and experimental
errors, the deviations from experiment are generally well
correlated, of similar magnitude and in the same direction.
This suggests again that these errors are more likely attrib-
utable to shortcomings of the discrete model and its param-
eters than to inaccuracies in the continuum and Monte Carlo
computations. Our experience has been that the continuum
and Monte Carlo computations are in good agreement even
for small changes in base-pair sequence. For example, in the
course of our research, we computed continuum energies for
two 158-base-pair molecules~11A17 with two base-pairs re-
moved from the PCR segment and 11A17 with two base-
pairs removed from adaptor I! and predicted an energy dif-
ference of 0.4RT60.1RT. Subsequent Monte Carlo
computations found an energy difference in the same direc-
tion of 0.65RT60.3RT, in agreement with the continuum
predictions. These two molecules are very similar—one ex-
pects cyclization rates to depend primarily on the DNA
length and on the adaptor II sequence which phases the two
DNA bends, not on the PCR segment or adaptor I at the
DNA ends—and yet the continuum model was able to detect
their differences, even with the filtering and smoothing in-
volved in the model.

XI. DISCUSSION

We have presented a procedure for taking the parameters
of a discrete base-pair model for DNA and producing
smoothed parameters for a continuum rod model. This idea
attempts to reconcile the desire for large-scale, numerically
efficient discretization in computations with the experimental
fact that the sequence of a DNA molecule does have an
effect on some of its large-scale physical properties. Some
DNA properties do not depend significantly on the base-pair
sequence, and the sequence-dependent techniques described
here would not be necessary for those applications, although
the continuum rod model can still provide an excellent com-
putational tool. Similarly, some DNA properties are so inher-
ently local that they could not be captured by a computation
whose discretization length covers several base-pairs, and of
course the smoothing algorithm proposed here would be un-
suitable for those applications. For properties between these
two extremes, such as the DNA bending results in Section X
or the consequences of protein binding on DNA structure~to
be investigated in a future study!, the continuum rod model
coupled with the smoothed sequence-dependence outlined in
this paper provide an accurate and efficient means to com-
pute sequence-dependent DNA deformations.

Even though the computation of continuum rod param-
eters involves significant smoothing and filtering, a surpris-
ingly detailed level of base-pair information is retained in the
averaged model. As shown in Table II, the continuum ener-
gies match the discrete energies to within 0.5%. Accord-
ingly, even if computation of discrete equilibria is the stated
objective, we believe that the introduction of the continuum
model described here, taken with a discretization chosen for
efficient numerics, and followed by reconstruction of the
base-pair configuration, is an overall efficient computational
approach.

The sequences studied in Section X differ very little, and
yet the rod model is able to separate their cyclization ener-
gies in a way that is consistent with experiment. Certainly
there are limitations to the continuum model. It relies on
accurate knowledge of the discrete model parameters de-
scribing how base-pairs stack on each other and their resis-
tance to bending and twisting. In some settings, the discrete-
model nearest-neighbor assumption in stacking of base-pairs
may be incorrect; longer range effects may also be important.
What does seem to be true is that if the discrete model and its
parameters are accurate, then the continuum model success-
fully captures many of its long-range behaviors and allows
for more rapid computations for those long-range behaviors.
In addition, the generality of the rod model could allow con-
tinuum descriptions of more intricate discrete base-pair mod-
els as they are developed.

Note added in proof.After acceptance of this article, we
learned of the study by P. De Santis, M. Fua, M. Savino, C.
Anselmi, and G. Bocchinfuso,@J. Phys. Chem.100, 9968
~1996!#, which also considers DNA cyclization~including
some of the sequences considered here!. That work uses an
extension of the statistical mechanical twisted-wormlike-
chain theory~cf. Section X! that includes an approximation
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to elasticity theory based on an assumption of constant twist
and a Fourier analysis of sequence-dependent curvatures.
Our work provides an extremely accurate computation of
purely elastic energy, but our continuum model does not cap-
ture the entropic effects approximated by the De Santiset al.
model.
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