31 research outputs found

    Foliar stable isotope ratios of carbon and nitrogen in boreal forest plants exposed to long-term pollution from the nickel-copper smelter at Monchegorsk, Russia

    Get PDF
    Long-term exposure to primary air pollutants, such as sulphur dioxide (SO2) and nitrogen oxides (NOx), alters the structure and functions of forest ecosystems. Many biochemical and biogeochemical processes discriminate against the heavier isotopes in a mixture; thus, the values of delta C-13 and delta N-15 (i.e. the ratio of stable isotopes C-13 to C-12 and that of (15) N to (14) N, respectively) may give insights into changes in ecosystem processes and identify the immediate drivers of these changes. We studied sources of variation in the delta C-13 and delta N-15 values in the foliage of eight boreal forest C3 plants at 10 sites located at the distance of 1-40 km from the Monchegorsk nickel-copper smelter in Russia. From 1939-2019, this smelter emitted over 14,000,000 metric tons (t) of SO2, 250,000 t of metals, primarily nickel and copper, and 140,000 t of NOx. The delta C-13 value in evergreen plants and the delta N-15 value in all plants increased near the smelter independently of the plant mycorrhizal type. We attribute the pollution-related increase in the foliar delta C-13 values of evergreen species mainly to direct effects of SO2 on stomatal conductance, in combination with pollution-related water stress, which jointly override the potential opposite effect of increasing ambient CO2 concentration on delta C-13 values. Stomatal uptake of NOx and root uptake of N-15-enriched organic N compounds and NH4+ may explain the increased foliar delta N-15 values and elevated foliar N concentrations, especially in the evergreen trees (Pinus sylvestris), close to Monchegorsk, where the soil inorganic N supply is reduced due to the impact of long-term SO2 and heavy metal emissions on plant biomass. We conclude that, despite the uncertainties in interpreting delta C-13 and delta N-15 responses to pollution, the Monchegorsk smelter has imposed and still imposes a great impact on C and N cycling in the surrounding N-limited subarctic forest ecosystems.Peer reviewe

    Foliar stable isotope ratios of carbon and nitrogen in boreal forest plants exposed to long-term pollution from the nickel-copper smelter at Monchegorsk, Russia

    Get PDF
    Long-term exposure to primary air pollutants, such as sulphur dioxide (SO2) and nitrogen oxides (NOx), alters the structure and functions of forest ecosystems. Many biochemical and biogeochemical processes discriminate against the heavier isotopes in a mixture; thus, the values of delta C-13 and delta N-15 (i.e. the ratio of stable isotopes C-13 to C-12 and that of (15) N to (14) N, respectively) may give insights into changes in ecosystem processes and identify the immediate drivers of these changes. We studied sources of variation in the delta C-13 and delta N-15 values in the foliage of eight boreal forest C3 plants at 10 sites located at the distance of 1-40 km from the Monchegorsk nickel-copper smelter in Russia. From 1939-2019, this smelter emitted over 14,000,000 metric tons (t) of SO2, 250,000 t of metals, primarily nickel and copper, and 140,000 t of NOx. The delta C-13 value in evergreen plants and the delta N-15 value in all plants increased near the smelter independently of the plant mycorrhizal type. We attribute the pollution-related increase in the foliar delta C-13 values of evergreen species mainly to direct effects of SO2 on stomatal conductance, in combination with pollution-related water stress, which jointly override the potential opposite effect of increasing ambient CO2 concentration on delta C-13 values. Stomatal uptake of NOx and root uptake of N-15-enriched organic N compounds and NH4+ may explain the increased foliar delta N-15 values and elevated foliar N concentrations, especially in the evergreen trees (Pinus sylvestris), close to Monchegorsk, where the soil inorganic N supply is reduced due to the impact of long-term SO2 and heavy metal emissions on plant biomass. We conclude that, despite the uncertainties in interpreting delta C-13 and delta N-15 responses to pollution, the Monchegorsk smelter has imposed and still imposes a great impact on C and N cycling in the surrounding N-limited subarctic forest ecosystems

    NH3 concentrations below the current critical level affect the epiphytic macrolichen communities – Evidence from a Northern European City

    Get PDF
    Acidophytic, oligotrophic lichens on tree trunks are widely considered to be the most sensitive biota to elevated con-centrations of atmospheric ammonia (NH3). We studied the relationships between measured NH3 concentrations and the composition of macrolichen communities on the acidic bark of Pinus sylvestris and Quercus robur and the base-rich bark of Acer platanoides and Ulmus glabra at ten roadside and ten non-roadside sites in Helsinki, Finland. NH3 and ni-trogen dioxide (NO2) concentrations were higher at the roadside than non-roadside sites indicating traffic as the main source of NH3 and nitrogen oxides (NOx). The diversity of oligotrophs on Quercus was lower at the roadside than non-roadside sites, while that of eutrophs was higher. The abundance and presence of oligotrophic acidophytes (e.g., Hypogymnia physodes) decreased with increasing NH3 concentration (2-year means = 0.15-1.03 mu g m-3) espe-cially on Q. robur, while those of eutrophic/nitrophilous species (e.g., Melanohalea exasperatula, Physcia tenella) in-creased. The abundance of some nitrophytes seemed to depend only on bark pH, i.e., their abundances were highest on Ulmus, which had the highest average bark pH. Overall, the results of lichen bioindicator studies may depend on tree species (bark pH) and lichen species used in calculating indices describing the air quality impact. Nevertheless, Quercus is recommended to be used to study the impact of NH3 alone and in combination with NOx on lichen commu-nities, because the responses of both oligotrophic acidophytes and eutrophic species can already be observed at NH3 concentrations below the current critical level.Peer reviewe

    Nitrogen deposition does not enhance Sphagnum decomposition

    Get PDF
    Long-term additions of nitrogen (N) to peatlands have altered bryophyte growth, species dominance, N content in peat and peat water, and often resulted in enhanced Sphagnum decomposition rate. However, these results have mainly been derived from experiments in which N was applied as ammonium nitrate (NH4NO3), neglecting the fact that in polluted areas, wet deposition may be dominated either by NO3- or NH4+. We studied effects of elevated wet deposition of NO3- vs. NH4+ alone (8 or 56 kg N ha(-1) yr(-1) over and above the background of 8 kg N ha(-1) yr(-1) for 5 to 11 years) or combined with phosphorus (P) and potassium (K) on Sphagnum quality for decomposers, mass loss, and associated changes in hummock pore water in an ombrotrophic bog (Whim). Adding N, especially as NH4+, increased N concentration in Sphagnum, but did not enhance mass loss from Sphagnum. Mass loss seemed to depend mainly on moss species and climatic factors. Only high applications of N affected hummock pore water chemistry, which varied considerably over time. Overall, C and N cycling in this N treated bog appeared to be decoupled. We conclude that moss species, seasonal and annual variation in climatic factors, direct negative effects of N (NH4+ toxicity) on Sphagnum production, and indirect effects (increase in pH and changes in plant species dominance under elevated NO3- alone and with PK) drive Sphagnum decomposition and hummock C and N dynamics at Whim. (C) 2016 Elsevier B.V. All rights reserved.Peer reviewe

    Forest mosses sensitively indicate nitrogen deposition in boreal background areas

    Get PDF
    Mosses take up nitrogen (N) mainly from precipitation through their surfaces, which makes them competent bioindicators of N deposition. We found positive relationships between the total N concentration (mossN%) of common terrestrial moss species (feather mosses Pleurozium schreberi and Hylocomium splendens, and a group of Dicranum species) and different forms of N deposition in 11-16 coniferous forests with low N deposition load in Finland. The mosses were collected either inside (Dicranum group) or both inside and outside (feather mosses) the forests. Deposition was monitored in situ as bulk deposition (BD) and stand throughfall (TF) and detected for ammonium (NH4+-N), nitrate (NO3--N), dissolved organic N (DON), and total N (N-tot, kg ha(-1)yr(-1)). N-tot deposition was lower in TF than BD indicating that tree canopies absorbed N from deposition in N limited boreal stands. However, mossN % was higher inside than outside the forests. In regression equations, inorganic N in BD predicted best the mossN% in openings, while DON in TF explained most variation of mossN% in forests. An asymptotic form of mossN% vs. TF N-tot curves in forests and free NH4+-N accumulation in tissues in the southern plots suggested mosses were near the N saturation state already at the N-tot deposition level of 3-5 kg ha(-1) yr(-1). N leachate from ground litterfall apparently also contributed the N supply of mosses. Our study yielded new information on the sensitivity of boreal mosses to low N deposition and their response to different N forms in canopy TF entering moss layer. The equations predicting the N-tot deposition with mossN% showed a good fit both in forest sites and openings, especially in case of P. schreberi. However, the open site mossN% is a preferable predictor of N deposition in monitoring studies to minimize the effect of tree canopies and N leachate from litterfall on the estimates. (C) 2020 Elsevier Ltd. All rights reserved.Peer reviewe

    Observed and modeled black carbon deposition and sources in the Western Russian Arctic 1800-2014

    Get PDF
    https://doi.org/10.1021/acs.est.0c07656Black carbon (BC) particles contribute to climate warming by heating the atmosphere and reducing the albedo of snow/ice surfaces. The available Arctic BC deposition records are restricted to the Atlantic and North American sectors, for which previous studies suggest considerable spatial differences in trends. Here, we present first long-term BC deposition and radiocarbon-based source apportionment data from Russia using four lake sediment records from western Arctic Russia, a region influenced by BC emissions from oil and gas production. The records consistently indicate increasing BC fluxes between 1800 and 2014. The radiocarbon analyses suggest mainly (similar to 70%) biomass sources for BC with fossil fuel contributions peaking around 1960-1990. Backward calculations with the atmospheric transport model FLEXPART show emission source areas and indicate that modeled BC deposition between 1900 and 1999 is largely driven by emission trends. Comparison of observed and modeled data suggests the need to update anthropogenic BC emission inventories for Russia, as these seem to underestimate Russian BC emissions and since 1980s potentially inaccurately portray their trend. Additionally, the observations may indicate underestimation of wildfire emissions in inventories. Reliable information on BC deposition trends and sources is essential for design of efficient and effective policies to limit climate warming.Peer reviewe

    The vulnerability of northern European vegetation to ozone damage in a changing climate. An assessment based on current knowledge

    Get PDF
    The potential vulnerability of vegetation at northern latitudes to ozone damage was assessed based on current knowledge with regard to air ozone concentrations and leaf ozone uptake as well as to plant traits affecting ozone tolerance. The focus was on the northern European arctic, alpine and northern boreal vegetation zones, with a special focus on high-altitude vegetation. In particular, we analysed if there are increasing risks for ozone impacts on northern vegetation due to high spring ozone concentrations in relation to climate change induced shifts such as e.g. an earlier start of the growing season. The current state of knowledge implies that ecosystems in the far north are not more susceptible to ozone than vegetation in other parts of Europe. Hence, we cannot advocate for a stronger reduction of ozone precursors emissions based exclusively on the ozone sensitivity of vegetation in the far north. Thus, policies designed to reduce emissions of ozone precursors to protect vegetation in other parts of Europe as well as in the entire northern hemisphere are likely to suffice to protect vegetation in northern Fennoscandia.The report describes an assessment of the potential vulnerability of far northern European vegetation to ozone damage in a changing climate. Scientists from Sweden, Norway and Finland have joined in and the assessments rely on the experience and expertise of the authors. We could not find evidence that expected changes in ozone concentrations and climate would make the northern arctic, alpine and subalpine vegetation substantially more vulnerable to ozone than other types of European vegetation

    Diffusion tensor imaging is associated with motor outcomes of very preterm born children at 11 years of age

    Get PDF
    Aim Very preterm children born Methods A cohort of 37 very preterm infants (mean gestational age 29 4/7, SD 2 0/7) born in 2004-2006 in Turku University Hospital underwent diffusion tensor imaging at term. A region of interest analysis of fractional anisotropy and mean diffusivity was performed. Motor outcomes at 11 years of age were measured with the Movement Assessment Battery for Children - Second Edition. Results The diffusion metrics of the corpus callosum (genu P = .005, splenium P = .049), the left corona radiata (P = .035) and the right optic radiation (P = .017) were related to later motor performance. Mean diffusivity decreased and fractional anisotropy increased in proportion to the improving performance. Conclusion The diffusion metrics of the genu and splenium of the corpus callosum, the left corona radiata and the right optic radiation at term were associated with motor skills at 11 years of age. Diffusion tensor imaging should be further studied as a potential tool in recognising children at risk for motor impairment.</div
    corecore