62 research outputs found

    Understanding the mechanism stabilizing intermediate spin states in Fe(II)-Porphyrin

    Full text link
    Spin fluctuations in Fe(II)-porphyrins are at the heart of heme-proteins functionality. Despite significant progress in porphyrin chemistry, the mechanisms that rule spin state stabilisation remain elusive. Here, it is demonstrated by using multiconfigurational quantum chemical approaches, including the novel Stochastic-CASSCF method, that electron delocalization between the metal centre and the pi system of the macrocycle differentially stabilises the triplet spin states over the quintet. This delocalisation takes place via charge-transfer excitations, involving the out-of-plane iron d orbitals, key linking orbitals between metal and macrocycle. Through a correlated breathing mechanism, the 3d electrons can make transitions towards the pi orbitals of the macrocycle. This guarantees a strong coupling between the on-site radial correlation on the metal and electron delocalization. Opposite-spin 3d electrons of the triplet can effectively reduce electron repulsion in this manner. Constraining the out-of-plane orbitals from breathing hinders delocalization and reverses the spin ordering. Our results find a qualitative analogue in Kekul\'e resonance structures involving also the metal centre

    Magnetic Interactions in a [Co(II)3Er(III)(OR)4] Model Cubane through Forefront Multiconfigurational Methods

    Full text link
    Strong electron correlation effects are one of the major challenges in modern quantum chemistry. Polynuclear transition metal clusters are peculiar examples of systems featuring such forms of electron correlation. Multireference strategies, often based on but not limited to the concept of complete active space, are adopted to accurately account for strong electron correlation and to resolve their complex electronic structures. However, transition metal clusters already containing four magnetic centers with multiple unpaired electrons make conventional active space based strategies prohibitively expensive, due to their unfavorable scaling with the size of the active space. In this work, forefront techniques, such as density matrix renormalization group (DMRG), full configuration interaction quantum Monte Carlo (FCIQMC), and multiconfiguration pair-density functional theory (MCPDFT), are employed to overcome the computational limitation of conventional multireference approaches and to accurately investigate the magnetic interactions taking place in a [Co(II)3Er(III)(OR)4] (chemical formula [Co(II)3Er(III)(hmp)4(ÎŒ2-OAc)2(OH)3(H2O)], hmp = 2-(hydroxymethyl)-pyridine) model cubane water oxidation catalyst. Complete active spaces with up to 56 electrons in 56 orbitals have been constructed for the seven energetically lowest different spin states. Relative energies, local spin, and spin–spin correlation values are reported and provide crucial insights on the spin interactions for this model system, pivotal in the rationalization of the catalytic activity of this system in the water-splitting reaction. A ferromagnetic ground state is found with a very small, ∌50 cm–1, highest-to-lowest spin gap. Moreover, for the energetically lowest states, S = 3–6, the three Co(II) sites exhibit parallel aligned spins, and for the lower states, S = 0–2, two Co(II) sites retain strong parallel spin alignment

    Quenched Lewis Acidity : Studies on the Medium Dependent Fluorescence of Zinc(II) Complexes

    Get PDF
    Three new zinc(II) coordination units [Zn(1–3)] based on planar‐directing tetradentate Schiff base‐like ligands H(2)(1–3) were synthesized. Their solid‐state structures were investigated by single crystal X‐ray diffraction, showing the tendency to overcome the square‐planar coordination sphere by axial ligation. Affinity in solution towards axial ligation has been tested by extended spectroscopic studies, both in the absorption and emission mode. The electronic spectrum of the pyridine complex [Zn(1)(py)] has been characterized by MC‐PDFT to validate the results of extended TD‐DFT studies. Green emission of non‐emissive solutions of [Zn(1–3)] in chloroform could be switched on in the presence of potent Lewis‐bases. While interpretation in terms of an equilibrium of stacked/non‐fluorescent and destacked/fluorescent species is in line with precedents from literature, the sensitivity of [Zn(1–3)] was greatly reduced. Results of a computation‐based structure search allow to trace the hidden Lewis acidity of [Zn(1–3)] to a new stacking motif, resulting in a strongly enhanced stability of the dimers

    Spin-Pure Stochastic-CASSCF via GUGA-FCIQMC Applied to Iron-Sulfur Clusters.

    Get PDF
    Funder: Max-Planck-GesellschaftIn this work, we demonstrate how to efficiently compute the one- and two-body reduced density matrices within the spin-adapted full configuration interaction quantum Monte Carlo (FCIQMC) method, which is based on the graphical unitary group approach (GUGA). This allows us to use GUGA-FCIQMC as a spin-pure configuration interaction (CI) eigensolver within the complete active space self-consistent field (CASSCF) procedure and hence to stochastically treat active spaces far larger than conventional CI solvers while variationally relaxing orbitals for specific spin-pure states. We apply the method to investigate the spin ladder in iron-sulfur dimer and tetramer model systems. We demonstrate the importance of the orbital relaxation by comparing the Heisenberg model magnetic coupling parameters from the CASSCF procedure to those from a CI-only (CASCI) procedure based on restricted open-shell Hartree-Fock orbitals. We show that the orbital relaxation differentially stabilizes the lower-spin states, thus enlarging the coupling parameters with respect to the values predicted by ignoring orbital relaxation effects. Moreover, we find that, while CASCI results are well fit by a simple bilinear Heisenberg Hamiltonian, the CASSCF eigenvalues exhibit deviations that necessitate the inclusion of biquadratic terms in the model Hamiltonian

    Combined unitary and symmetric group approach applied to low-dimensional Heisenberg spin systems

    Get PDF
    A novel combined unitary and symmetric group approach is used to study the spin-1/2 Heisenberg model and related Fermionic systems in a total spin-adapted representation, using a linearly-parameterised Ansatz for the many-body wave function. We show that a more compact ground-state wave function representation-indicated by a larger leading ground-state coefficient-is obtained when combining the symmetric group S-n, in the form of permutations of the underlying lattice site ordering, with the cumulative spin coupling based on the unitary group U(n). In one-dimensional systems the observed compression of the wave function is reminiscent of block-spin renormalization group approaches, and allows us to study larger lattices (here taken up to 80 sites) with the spin-adapted full configuration interaction quantum Monte Carlo method, which benefits from the sparsity of the Hamiltonian matrix and the corresponding sampled eigenstates that emerge from the reordering. We find that in an optimal lattice ordering the configuration state function with highest weight already captures with high accuracy the spin-spin correlation function of the exact ground-state wave function. This feature is found for more general lattice models, such as the Hubbard model, and ab initio quantum chemical models, exemplified by one-dimensional hydrogen chains. We also provide numerical evidence that the optimal lattice ordering for the unitary group approach is not generally equivalent to the optimal ordering obtained for methods based on matrix-product states, such as the density-matrix renormalization group approach

    The OpenMolcas Web: A Community-Driven Approach to Advancing Computational Chemistry

    Get PDF
    The developments of the open-source OpenMolcas chemistry software environment since spring 2020 are described, with a focus on novel functionalities accessible in the stable branch of the package or via interfaces with other packages. These developments span a wide range of topics in computational chemistry and are presented in thematic sections: electronic structure theory, electronic spectroscopy simulations, analytic gradients and molecular structure optimizations, ab initio molecular dynamics, and other new features. This report offers an overview of the chemical phenomena and processes OpenMolcas can address, while showing that OpenMolcas is an attractive platform for state-of-the-art atomistic computer simulations

    Mortality from gastrointestinal congenital anomalies at 264 hospitals in 74 low-income, middle-income, and high-income countries: a multicentre, international, prospective cohort study

    Get PDF
    Summary Background Congenital anomalies are the fifth leading cause of mortality in children younger than 5 years globally. Many gastrointestinal congenital anomalies are fatal without timely access to neonatal surgical care, but few studies have been done on these conditions in low-income and middle-income countries (LMICs). We compared outcomes of the seven most common gastrointestinal congenital anomalies in low-income, middle-income, and high-income countries globally, and identified factors associated with mortality. Methods We did a multicentre, international prospective cohort study of patients younger than 16 years, presenting to hospital for the first time with oesophageal atresia, congenital diaphragmatic hernia, intestinal atresia, gastroschisis, exomphalos, anorectal malformation, and Hirschsprung’s disease. Recruitment was of consecutive patients for a minimum of 1 month between October, 2018, and April, 2019. We collected data on patient demographics, clinical status, interventions, and outcomes using the REDCap platform. Patients were followed up for 30 days after primary intervention, or 30 days after admission if they did not receive an intervention. The primary outcome was all-cause, in-hospital mortality for all conditions combined and each condition individually, stratified by country income status. We did a complete case analysis. Findings We included 3849 patients with 3975 study conditions (560 with oesophageal atresia, 448 with congenital diaphragmatic hernia, 681 with intestinal atresia, 453 with gastroschisis, 325 with exomphalos, 991 with anorectal malformation, and 517 with Hirschsprung’s disease) from 264 hospitals (89 in high-income countries, 166 in middleincome countries, and nine in low-income countries) in 74 countries. Of the 3849 patients, 2231 (58·0%) were male. Median gestational age at birth was 38 weeks (IQR 36–39) and median bodyweight at presentation was 2·8 kg (2·3–3·3). Mortality among all patients was 37 (39·8%) of 93 in low-income countries, 583 (20·4%) of 2860 in middle-income countries, and 50 (5·6%) of 896 in high-income countries (p<0·0001 between all country income groups). Gastroschisis had the greatest difference in mortality between country income strata (nine [90·0%] of ten in lowincome countries, 97 [31·9%] of 304 in middle-income countries, and two [1·4%] of 139 in high-income countries; p≀0·0001 between all country income groups). Factors significantly associated with higher mortality for all patients combined included country income status (low-income vs high-income countries, risk ratio 2·78 [95% CI 1·88–4·11], p<0·0001; middle-income vs high-income countries, 2·11 [1·59–2·79], p<0·0001), sepsis at presentation (1·20 [1·04–1·40], p=0·016), higher American Society of Anesthesiologists (ASA) score at primary intervention (ASA 4–5 vs ASA 1–2, 1·82 [1·40–2·35], p<0·0001; ASA 3 vs ASA 1–2, 1·58, [1·30–1·92], p<0·0001]), surgical safety checklist not used (1·39 [1·02–1·90], p=0·035), and ventilation or parenteral nutrition unavailable when needed (ventilation 1·96, [1·41–2·71], p=0·0001; parenteral nutrition 1·35, [1·05–1·74], p=0·018). Administration of parenteral nutrition (0·61, [0·47–0·79], p=0·0002) and use of a peripherally inserted central catheter (0·65 [0·50–0·86], p=0·0024) or percutaneous central line (0·69 [0·48–1·00], p=0·049) were associated with lower mortality. Interpretation Unacceptable differences in mortality exist for gastrointestinal congenital anomalies between lowincome, middle-income, and high-income countries. Improving access to quality neonatal surgical care in LMICs will be vital to achieve Sustainable Development Goal 3.2 of ending preventable deaths in neonates and children younger than 5 years by 2030

    Modeling Magnetic Interactions in High-Valent Trinuclear [Mn(IV)3O4]^4+ Complexes Through Highly Compressed Multi-Configurational Wave Functions

    No full text
    In this work we apply a quantum chemical framework, recently designed in our laboratories, to rationalize the low-energy electronic spectrum and the magnetic properties of an homo-valent trinuclear [Mn(IV)3 O4]4+ model of the oxygen-evolving center in photosystem II. The method is based on chemically motivated molecular orbital unitary transformations, and the optimization of spin-adapted many-body wave functions, both for ground- and excited-states, in the transformed MO basis. In this basis, the configuration interaction Hamiltonian matrix of exchange-coupled multi-center clusters is extremely sparse and characterized by a unique block diagonal structure. This property leads to highly compressed wave functions (oligo- or single-reference) and crucially enables state-specific optimizations. The reduced multi-reference character of the wave function greatly simplifies the interpretation of the ground- and excited-state electronic structures, and provides a route for the direct rationalization of magnetic interactions in these compounds, often considered a challenge in polynuclear transition-metal chemistry.</p

    New methods to treat strongly correlated systems

    No full text
    This thesis focuses on development of three novel multiconfigurational quantum chemical methods, to study strongly correlated systems: GASSCF, SplitCAS and SplitGAS. By GASSCF it is possible to eliminate ineffective configurations from the CI expansion by choosing an arbitrary number of active spaces and by tuning the interspace excitations. By SplitCAS and SplitGAS, the CI wave function generated by CAS or GAS type of active spaces is partitioned into two parts: a principal part containing few relevant configurations and an extended part containing less relevant configurations. The two methods differ in the criteria for the splitting. Lowdin's partitioning technique is used to reduce the secular problem to the size of the principal space. These methods allow for an enlargement of the active space with respect to the CASSCF method. Theory, algorithmic details and test calculations are presented. Based on this work, the ‘scaling catastrophe' of the CASSCF approach is partially solved
    • 

    corecore