933 research outputs found

    Critical properties of phase transitions in lattices of coupled logistic maps

    Full text link
    We numerically demonstrate that collective bifurcations in two-dimensional lattices of locally coupled logistic maps share most of the defining features of equilibrium second-order phase transitions. Our simulations suggest that these transitions between distinct collective dynamical regimes belong to the universality class of Miller and Huse model with synchronous update

    Large scale flow around turbulent spots

    Full text link
    Numerical simulations of a model of plane Couette flow focusing on its in-plane spatio-temporal properties are used to study the dynamics of turbulent spots.Comment: 16 pages, 6 figure

    Grain boundary dynamics in stripe phases of non potential systems

    Full text link
    We describe numerical solutions of two non potential models of pattern formation in nonequilibrium systems to address the motion and decay of grain boundaries separating domains of stripe configurations of different orientations. We first address wavenumber selection because of the boundary, and possible decay modes when the periodicity of the stripe phases is different from the selected wavenumber for a stationary boundary. We discuss several decay modes including long wavelength undulations of the moving boundary as well as the formation of localized defects and their subsequent motion. We find three different regimes as a function of the distance to the stripe phase threshold and initial wavenumber, and then correlate these findings with domain morphology during domain coarsening in a large aspect ratio configuration.Comment: 8 pages, 8 figure

    Lyapunov analysis captures the collective dynamics of large chaotic systems

    Full text link
    We show, using generic globally-coupled systems, that the collective dynamics of large chaotic systems is encoded in their Lyapunov spectra: most modes are typically localized on a few degrees of freedom, but some are delocalized, acting collectively on the trajectory. For globally-coupled maps, we show moreover a quantitative correspondence between the collective modes and some of the so-called Perron-Frobenius dynamics. Our results imply that the conventional definition of extensivity must be changed as soon as collective dynamics sets in.Comment: 4 pages, 4 figures; small changes, mostly stylistic, made in v

    On the decay of turbulence in plane Couette flow

    Full text link
    The decay of turbulent and laminar oblique bands in the lower transitional range of plane Couette flow is studied by means of direct numerical simulations of the Navier--Stokes equations. We consider systems that are extended enough for several bands to exist, thanks to mild wall-normal under-resolution considered as a consistent and well-validated modelling strategy. We point out a two-stage process involving the rupture of a band followed by a slow regression of the fragments left. Previous approaches to turbulence decay in wall-bounded flows making use of the chaotic transient paradigm are reinterpreted within a spatiotemporal perspective in terms of large deviations of an underlying stochastic process.Comment: ETC13 Conference Proceedings, 6 pages, 5 figure

    Orientational instabilities in nematics with weak anchoring under combined action of steady flow and external fields

    Full text link
    We study the homogeneous and the spatially periodic instabilities in a nematic liquid crystal layer subjected to steady plane {\em Couette} or {\em Poiseuille} flow. The initial director orientation is perpendicular to the flow plane. Weak anchoring at the confining plates and the influence of the external {\em electric} and/or {\em magnetic} field are taken into account. Approximate expressions for the critical shear rate are presented and compared with semi-analytical solutions in case of Couette flow and numerical solutions of the full set of nematodynamic equations for Poiseuille flow. In particular the dependence of the type of instability and the threshold on the azimuthal and the polar anchoring strength and external fields is analysed.Comment: 12 pages, 6 figure

    On the degenerated soft-mode instability

    Full text link
    We consider instabilities of a single mode with finite wavenumber in inversion symmetric spatially one dimensional systems, where the character of the bifurcation changes from sub- to supercritical behaviour. Starting from a general equation of motion the full amplitude equation is derived systematically and formulas for the dependence of the coefficients on the system parameters are obtained. We emphasise the importance of nonlinear derivative terms in the amplitude equation for the behaviour in the vicinity of the bifurcation point. Especially the numerical values of the corresponding coefficients determine the region of coexistence between the stable trivial solution and stable spatially periodic patterns. Our approach clearly shows that similar considerations fail for the case of oscillatory instabilities.Comment: 16 pages, uses iop style files, manuscript also available at ftp://athene.fkp.physik.th-darmstadt.de/pub/publications/wolfram/jpa_97/ or at http://athene.fkp.physik.th-darmstadt.de/public/wolfram_publ.html. J. Phys. A in pres

    Ergodicity Breaking in a Deterministic Dynamical System

    Full text link
    The concept of weak ergodicity breaking is defined and studied in the context of deterministic dynamics. We show that weak ergodicity breaking describes a weakly chaotic dynamical system: a nonlinear map which generates subdiffusion deterministically. In the non-ergodic phase non-trivial distribution of the fraction of occupation times is obtained. The visitation fraction remains uniform even in the non-ergodic phase. In this sense the non-ergodicity is quantified, leading to a statistical mechanical description of the system even though it is not ergodic.Comment: 11 pages, 4 figure
    • …
    corecore