42 research outputs found

    Application of habitat thresholds in conservation: Considerations, limitations, and future directions

    Get PDF
    AbstractHabitat thresholds are often interpreted as the minimum required area of habitat, and subsequently promoted as conservation targets in natural resource policies and planning. Unfortunately, several recent reviews and messages of caution on the application of habitat thresholds in conservation have largely fallen on deaf ears, leading to a dangerous oversimplification and generalization of the concept. We highlight the prevalence of oversimplification/over-generalization of results from habitat threshold studies in policy documentation, the consequences of such over-generalization, and directions for habitat threshold studies that have conservation applications without risking overgeneralization. We argue that in order to steer away from misapplication of habitat thresholds in conservation, we should not focus on generalized nominal habitat values (i.e., amounts or percentages of habitat), but on the use of habitat threshold modeling for comparative exercises of area-sensitivity or the identification of environmental dangers. In addition, we should remain focused on understanding the processes and mechanisms underlying species responses to habitat change. Finally, studies could that focus on deriving nominal value threshold amounts should do so only if the thresholds are detailed, species-specific, and translated to conservation targets particular to the study area only

    Climate and changing winter distribution of alcids in the Northwest Atlantic

    Get PDF
    Population level impacts upon seabirds from changing climate are increasingly evident, and include effects on phenology, migration, dispersal, annual survivorship, and reproduction. Most population data on seabirds derive from nesting colonies; documented climate impacts on winter ecology are scarce. We studied interannual variability in winter abundance of six species of alcids (Charadriiformes, Alcidae) from a 58-year time series of data collected in Massachusetts 1954–2011. We used counts of birds taken during fall and winter from coastal vantage points. Counts were made by amateur birders, but coverage was consistent in timing and location. We found significant association between winter abundance of all six species of alcids and climate, indexed by North Atlantic Oscillation (NAO), at two temporal scales: (1) significant linear trends at the 58-year scale of the time series; and (2) shorter term fluctuations corresponding to the 5–8 year periodicity of NAO. Thus, variation in winter abundance of all six species of alcids was significantly related to the combined short-term and longer-term components of variation in NAO. Two low-Arctic species (Atlantic Puffin and Black Guillemot) peaked during NAO positive years, while two high Arctic species (Dovekie and Thick-billed Murre) peaked during NAO negative years. For Common Murres and Razorbills, southward shifts in winter distribution have been accompanied by southward expansion of breeding range, and increase within the core of the range. The proximate mechanism governing these changes is unclear, but, as for most other species of seabirds whose distributions have changed with climate, seems likely to be through their prey

    Climate and changing winter distribution of alcids in the Northwest Atlantic

    Full text link
    Population level impacts upon seabirds from changing climate are increasingly evident, and include effects on phenology, migration, dispersal, annual survivorship, and reproduction. Most population data on seabirds derive from nesting colonies; documented climate impacts on winter ecology are scarce. We studied interannual variability in winter abundance of six species of alcids (Charadriiformes, Alcidae) from a 58-year time series of data collected in Massachusetts 1954–2011. We used counts of birds taken during fall and winter from coastal vantage points. Counts were made by amateur birders, but coverage was consistent in timing and location. We found significant association between winter abundance of all six species of alcids and climate, indexed by North Atlantic Oscillation (NAO), at two temporal scales: (1) significant linear trends at the 58-year scale of the time series; and (2) shorter term fluctuations corresponding to the 5–8 year periodicity of NAO. Thus, variation in winter abundance of all six species of alcids was significantly related to the combined short-term and longer-term components of variation in NAO. Two low-Arctic species (Atlantic Puffin and Black Guillemot) peaked during NAO positive years, while two high Arctic species (Dovekie and Thick-billed Murre) peaked during NAO negative years. For Common Murres and Razorbills, southward shifts in winter distribution have been accompanied by southward expansion of breeding range, and increase within the core of the range. The proximate mechanism governing these changes is unclear, but, as for most other species of seabirds whose distributions have changed with climate, seems likely to be through their prey

    Temporal changes in abundance–occupancy relationships over 40 years

    No full text
    Abstract Abundance–occupancy (A–O) relationships are widely documented for many organismal groups and regions, and have been used to gain an understanding of regional population and community trends. Monitoring changes in abundance and occupancy over time may be what is required to document changes in conservation status and needs for some species, communities, or areas. We hypothesize that if there is a higher proportion of declining species in one group of species compared with another (e.g., migratory species vs. permanent residents), then a consequence of that difference will be vastly different abundance–occupancy relationships. If this difference persists through time, then the resulting A–O relationships between the groups will continue to diverge. For neotropical migrants, short‐distance migrants, and permanent resident birds of North America, we assess the numbers of declining species over 1969–2009. We further test for differences in the A–O relationship across these three groups, and in rates of change in abundance and occupancy separately. We find significant differences in numbers of declining species across the migratory groups, a significant decline in the A–O relationship for permanent residents, a significant increase for Neotropical migrants, and a nonsignificant decline for short‐distance migrants over the 40 years. Further, abundances are not changing at different rates but occupancies are consistently greater over time for neotropical migrants versus permanent residents, likely driving the changes in A–O relationships observed. In these analyses, we documented changing A–O trends for different groups of species, over a relatively long time period for ecological studies, one of only a few studies to examine A–O relationships over time. Further, we have shown that a temporally unvarying abundance–occupancy relationship is not universal, and we posit that variability in A–O relationships is due to human impacts on habitats, coupled with variation in species' abilities to respond to human impacts

    The diversity and abundance of North American bird assemblages fail to track changing productivity

    No full text
    Plant biomass or productivity and the species richness of birds are associated across a range of spatial scales. Species-energy theory is generally assumed to explain these correlations. If true, bird richness should also track productivity temporally, and there should be spatial and temporal relationships between productivity and both bird abundance and bird richness. Using the summer normalized difference vegetation index (NDVI) for 1982-2006 and the North American Breeding Bird Survey, we evaluated the response of avian richness and abundance to interannual changes in plant biomass or productivity. We found positive spatial relationships between richness and NDVI for all 25 years. Temporally, however, richness and NDVI were positively associated at 1579 survey sites and negatively associated at 1627 sites (mean r2 = 0.09). Further, total abundance and NDVI were unrelated spatially (r2 values spanning < 0.01 and 0.03) and weakly related temporally (mean r2 = 0.10). We found no evidence that productivity drives bird richness beyond the spatial correlations, and neither prediction arising from species-energy theory was confirmed. Spatial relationships between productivity and bird richness may thus be largely spurious, arising via covariance between plant biomass or productivity and vegetation structural complexity, and the latter may be driving bird communities. This is consistent with the MacArthurs' classic hypothesis that the vertical profile of foliage drives bird species diversity

    Assessing Regional and Interspecific Variation in Threshold Responses of Forest Breeding Birds through Broad Scale Analyses

    Get PDF
    <div><h3>Background</h3><p>Identifying persistence and extinction thresholds in species-habitat relationships is a major focal point of ecological research and conservation. However, one major concern regarding the incorporation of threshold analyses in conservation is the lack of knowledge on the generality and transferability of results across species and regions. We present a multi-region, multi-species approach of modeling threshold responses, which we use to investigate whether threshold effects are similar across species and regions.</p> <h3>Methodology/Principal Findings</h3><p>We modeled local persistence and extinction dynamics of 25 forest-associated breeding birds based on detection/non-detection data, which were derived from repeated breeding bird atlases for the state of Vermont. We did not find threshold responses to be particularly well-supported, with 9 species supporting extinction thresholds and 5 supporting persistence thresholds. This contrasts with a previous study based on breeding bird atlas data from adjacent New York State, which showed that most species support persistence and extinction threshold models (15 and 22 of 25 study species respectively). In addition, species that supported a threshold model in both states had associated average threshold estimates of 61.41% (SE = 6.11, persistence) and 66.45% (SE = 9.15, extinction) in New York, compared to 51.08% (SE = 10.60, persistence) and 73.67% (SE = 5.70, extinction) in Vermont. Across species, thresholds were found at 19.45–87.96% forest cover for persistence and 50.82–91.02% for extinction dynamics.</p> <h3>Conclusions/Significance</h3><p>Through an approach that allows for broad-scale comparisons of threshold responses, we show that species vary in their threshold responses with regard to habitat amount, and that differences between even nearby regions can be pronounced. We present both ecological and methodological factors that may contribute to the different model results, but propose that regardless of the reasons behind these differences, our results merit a warning that threshold values cannot simply be transferred across regions or interpreted as clear-cut targets for ecosystem management and conservation.</p> </div

    Histograms of forest cover across atlas blocks in the states of Vermont and New York.

    No full text
    <p>The frequency of atlas blocks with a particular proportion of forest cover in each of the states. The histograms illustrate that many atlas blocks in both states have high (e.g. more than 0.6, or 60%) levels of forest cover, but also indicate that forest cover across the Vermont atlas blocks is more or less homogeneous (high cover) while atlas blocks in New York have a more variable range of forest cover (i.e. there are many blocks with low forest cover as well). The forest cover of the priority atlas blocks in Vermont seems a representative sample of the forest cover of all atlas blocks in Vermont.</p

    Comparisons between logistic (non-threshold) and segmented (threshold) regression models for four forest breeding birds, with the best models highlighted in bold.

    No full text
    1<p>Percentage of forest cover associated with the response threshold.</p>2<p>Although the AIC and AUC values indicate support for the threshold model, visual inspection of the loess plot did not support the existence of a threshold.</p
    corecore