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Population level impacts upon seabirds from changing climate are increasingly

evident, and include effects on phenology, migration, dispersal, annual survivorship,

and reproduction. Most population data on seabirds derive from nesting colonies;

documented climate impacts on winter ecology are scarce. We studied interannual

variability in winter abundance of six species of alcids (Charadriiformes, Alcidae) from

a 58-year time series of data collected in Massachusetts 1954–2011. We used counts

of birds taken during fall and winter from coastal vantage points. Counts were made by

amateur birders, but coverage was consistent in timing and location. We found significant

association between winter abundance of all six species of alcids and climate, indexed

by North Atlantic Oscillation (NAO), at two temporal scales: (1) significant linear trends at

the 58-year scale of the time series; and (2) shorter term fluctuations corresponding to

the 5–8 year periodicity of NAO. Thus, variation in winter abundance of all six species of

alcids was significantly related to the combined short-term and longer-term components

of variation in NAO. Two low-Arctic species (Atlantic Puffin and Black Guillemot) peaked

during NAO positive years, while two high Arctic species (Dovekie and Thick-billed Murre)

peaked during NAO negative years. For Common Murres and Razorbills, southward

shifts in winter distribution have been accompanied by southward expansion of breeding

range, and increase within the core of the range. The proximate mechanism governing

these changes is unclear, but, as for most other species of seabirds whose distributions

have changed with climate, seems likely to be through their prey.

Keywords: alcid, climate change, NAO, multiscale, Northwest Atlantic, Massachusetts

Introduction

Fluctuating oceanic climate impacts population size (Montevecchi and Myers, 1997; Thompson
and Ollason, 2001), survivorship (Sandvik et al., 2005), fecundity (Guinet et al., 1998; Durant et al.,
2003, 2005; Wanless et al., 2007), phenology (Aebischer et al., 1990; Gjerdrum et al., 2003; Fred-
eriksen et al., 2004), and both summer and winter distribution (Veit et al., 1997; Manne, 2013)
of seabirds. Impacts of climate shifts on seabirds occur at multiple temporal scales, that can be
loosely grouped into “short-term” (<1 year: Hunt et al., 1992; Veit et al., 1996), “medium term”
(5–10 years) corresponding to fluctuations indexed by El Niño-Southern Oscillation (ENSO) and
North Atlantic Oscillation (NAO), and long-term trends (>10 years) that may also reflect longer
term fluctuations that our 50 year time series is less likely to resolve (Veit and Montevecchi, 2006).
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Since seabirds in general have long lifespans and produce rela-
tively few young per year, they are adapted to tolerate short-term
environmental disturbances (Veit and Montevecchi, 2006) and
populations have recovered from such short-term catastrophes
as El Niño events (Schreiber, 2002). Population responses to per-
sistent, long-term changes are less well-documented but climate
change on the scale of decades has caused substantial changes in
the range and distribution of seabirds (Montevecchi and Myers,
1997; Veit andMontevecchi, 2006; Gaston andWoo, 2008; Nisbet
et al., 2013).

Unambiguous, if complex, changes have occurred in the phys-
ical and biological characteristics of the North Atlantic Ocean
during this century (Stenseth and Mysterud, 2002; Hurrell and
Dickson, 2004; Stenseth et al., 2004), and these changes have
had substantial biological impacts, even though ascribing such
impacts unambiguously to climate is daunting (Hemery et al.,
2008; Overholtz and Link, 2009). Difficult to disentangle from
climate-induced impacts on seabirds are those resulting from
changes in fish stocks due to commercial fisheries. For exam-
ple, the spectacular collapse of northwestern Atlantic Cod stocks
in the early 1990s, and the decline of the herring fishery in
the late 1960s and early 1970s were almost certainly primar-
ily the result of overfishing (Fogarty and Murawski, 1998). The
collapse of these stocks has had broad-reaching impacts on
other components of the ecosystem, including seabirds (Fogarty
and Murawski, 1998; Montevecchi and Stenhouse, 2002). Other
changes are not so easily attributed to any one particular cause.
For example, the enormous increase of sand lance (Ammodytes
spp.) during the 1970s in the Northwest Atlantic (Sherman et al.,
1981) may have resulted from the disappearance of herring and
other predators due to overfishing, but other factors may have
been important as well. Many seabirds benefitted from the sand
lance increase (Veit and Petersen, 1993; Nisbet et al., 2013), but
whether any of these changes has a link to climate forcing is
unknown, and it is therefore difficult to disentangle whether
impacts on seabirds derive from climate, fisheries, a combination
of the two, or some other factor.

Much of the previous work on this subject has focused on the
northeast Atlantic, where changing climate is having a measur-
able effect upon seabirds, and it is thus highly likely that such
effects have occurred in the Northwest Atlantic as well. There
are, however, interesting differences in the direction of climate-
related effects between the two sides of the Atlantic. For example
abundance of the widespread copepod Calanus finmarchicus is
negatively correlated with NAO in the eastern, but positively cor-
related with NAO in the western Atlantic (Conversi et al., 2001;
Drinkwater et al., 2003), as is also SST and population changes in
guillemots (Irons et al., 2008). There is no question that climate-
related changes to the pelagic system are occurring, but how these
may have impacted seabird abundance off the North American
east coast is unknown.

NAO is a multivariate physical index used to characterize the
overall climatological state of the North Atlantic (Hurrell and
Dickson, 2004). The NAO is designed to reflect the distribu-
tion of sea level atmospheric pressure, but its values correlate
strongly with predominant flows of winds and surface currents.
The NAO has changed from a pattern of negative values during

∼1930–1975 to one of predominantly positive values from 1975
to 2000 (Hurrell and Dickson, 2004; Irons et al., 2008). The
more recent period of positive values reflects colder conditions
in the Northwest Atlantic; conversely, negative NAO years are
associated with warmer waters. Documented and statistically sig-
nificant shifts in intensity and direction of NAO have occurred
in recent years and, as shown below, these shifts have clearly
impacted the biology of the North Atlantic (Hurrell and Dickson,
2004).

At a decadal scale, southward shifts in alcid abundance seem
to match shifts in NAO (Figure 1). Veit and Guris (2008) found
statistical links between Razorbill (Alca torda) and Dovekie (Alle
alle) abundance and NAO in New England waters. Razorbills
have been increasing steadily since the 1980s, with peak abun-
dance occurring in NAO positive years, while Dovekies have
increased dramatically since about 2005, after a general absence
since about 1975. Abundance of Dovekies in New England has
been more erratic, but also statistically related to NAO, with
maximum numbers occurring in NAO-negative years (a pattern
strongly supported by maximum abundance in 2010–2011) and
thus opposite to the pattern shown by Razorbills. The proxi-
mate mechanism for the link between seabirds and NAO remains
unclear, but the majority of seabird-climate links has proven to be
indirect, and based on changes in seabird prey (Frederiksen et al.,
2004; Durant et al., 2005).

Alcid Winter Range
Alcids are notoriously erratic in their dispersal southwards dur-
ing winter (Nettleship and Birkhead, 1985; Gaston and Jones,
1998) and some species, especially Dovekies, are prone to south-
ward irruptions, very likely in response to abrupt changes in prey
availability (Gaston and Jones, 1998). Despite such variability
during winter, long-term changes in abundance off the U.S. East
Coast are apparent (Veit and Guris, 2008; Nisbet et al., 2013).
As recent major shifts in oceanographic climate have also been
described for the North Atlantic (Hurrell and Dickson, 2004;
Regular et al., 2010), it behooves us to ask whether shifts in winter
alcid distribution are related to changes in oceanographic climate.
Innovations of this study include an extensive uninterrupted, 58
year time series on seabird abundance from Massachusetts and
the fact that it documents the winter, non-breeding distribu-
tion of these birds. We therefore hypothesize that fluctuations in
oceanic climate impact the variability of winter abundance and
distribution of seabirds.

Methods

Massachusetts Time Series
In Massachusetts there are a number of coastal vantage points
from which seabirds have been counted annually since the 1930s.
The level of effort has been reasonably constant over the period
1954-present; while the number of observers in the field has
increased, the number of sites has not, so that the number of
hours devoted to counting is unlikely to have changed. Further-
more, both increases and decreases in abundance have occurred
during the period we have analyzed, so changes in abundance
cannot be simply the consequence of increased effort. Thus, we
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FIGURE 1 | Winter abundance vs. NAO for six alcid species in Massachusetts.

used this 58 year time series of bird abundance to ask whether
changes over that time period in alcid abundance are at least in
part related to changes in oceanic climate.

We extracted data on alcids from the publications Records
of New England Birds (1954–1968), Bird Observer of Eastern
Massachusetts (1972–1986), Bird Observer (1987-present), and
North American Birds and its predecessors (1954-present). Gaps
for the period 1969–1971 were filled by records maintained at the
Massachusetts Audubon Society by Ruth P. Emery (unpublished
database). Data in these publications were published as monthly
or bimonthly summaries.

The data used in the analyses were estimates of maximum
number present in any given winter. We considered that all
counts on outer Cape Cod (∼50 km long, mostly censused from
Provincetown, Figure 2) could possibly involve the same birds,
so we conservatively used the maximum number reported during
a winter anywhere on outer Cape Cod as the maximum for that

year. On the other hand, we assumed that birds counted at Cape
Ann or Nantucket were separate from birds counted on outer
Cape Cod, and tallied separately, for each winter, maxima from
Cape Ann, Cape Cod, and Nantucket. Although the bird abun-
dance data is limited in spatial scope, because of the enormous
spatial scope of seabird foraging ranges, samples from a limited
area are representative of the ocean basin as a whole (Veit et al.,
1997). The species in this analysis collectively cover 35◦ of lat-
itude, from Northern Greenland to Maine during the nesting
season and an even larger area during winter. Thus, this dataset
from Massachusetts is not only important for its length; it also
samples a substantial portion of the North Atlantic avifauna.

We used NAO index values averaged over December-March
for the years in which we extracted data on birds. So birds
recorded in November 2000–March 2001 were related to the
NAO index for December 2000–March 2001 (Hurrell and Dick-
son, 2004, http://www.cgd.ucar.edu/cas/jhurrell/indices.html).
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FIGURE 2 | Map of the study area showing the three main census

locations: Cape Ann, Provincetown (outer Cape Cod), and Nantucket.

We log transformed all bird abundance data. For four species
[Razorbill, Dovekie, Thick-billed Murre (Uria lomvia), and Black
Guillemot (Cepphus grylle)] the transformed data did not differ
significantly from normal (Kolmogorov–Smirnoff test, p > 0.1),
and we used cross-correlation to identify the temporal scale for
which correlation between bird abundance andNAOwas highest.
Maximum correlation was found at a lag of 0 years for all species
except Razorbill for which NAO in the previous year (lagged
NAO) gave a better fit (Razorbill numbers following NAO). For
these four species we used linear regression to relate abundance
in Massachusetts to NAO index in the same winter. For the other
two species [Atlantic Puffin (Fratercula arctica), and Common
Murre (Uria aalge)] the log-transformed data differed signifi-
cantly (p < 0.05) from the normal distribution so we used Spear-
man rank correlation coefficients to test for a correlation between
abundance and NAO.

To disentangle the possible population temporal autocorrela-
tion from direct effects of NAO on winter abundance, we com-
pared eight regression models for each species: a model with only
a year term (assuming a Poisson distribution vs. a negative bino-
mial distribution), models having a single NAO term (Poisson
vs. negative binomial), models having both year and NAO (Pois-
son vs. negative binomial), and models with year, NAO and a lag
term for the population size the previous year (Poisson vs. neg-
ative binomial). Among those eight models, the model with the
lower Akaike Information Criterion (AIC), but only where the
lower AIC differed from the next-higher AIC by more than two

units (Burnham and Anderson, 2002), was a better fit to the data
for that species. If the lower AIC occurred for a model incorpo-
rating NAO, then we concluded that even after time series and
lagged population effects had been accounted for, NAO acted
as a structuring effect for that species’ abundance. For ease of
visualization, we show graphs of the log-transformed responses
(species abundances). All analyses were conducted using R (R
Core Development Team, 2012).

Results

Five species (Razorbill, Common Murre, Thick-billed Murre,
Black Guillemot, and Atlantic Puffin) increased significantly over
the 58-year period (p < 0.05), and Dovekies decreased signifi-
cantly over the same period (p = 0.019, Figure 3). A significant
increasing linear trend is evident for NAO (Figure 3G). Thus,
all six species of alcids were significantly related to a 58-year
trend in NAO (Figure 3). At shorter timescales, five species were
significantly correlated with NAO as revealed by the modeling
(Table 1). For four of six species analyzed, the best model was
one that included effects of year, NAO and lagged intraspecific
abundance (Table 1); a fifth species’ best model included only
NAO, and the sixth species (Atlantic Puffin) was best modeled by
year alone. Thus, the importance of both a long-term (58 year)
trend and shorter term (5–8 year) oscillations in NAO signifi-
cantly impacted winter abundance of five out of six alcid species
in New England. For Razorbills, the best model was that which
included year, lagged NAO and lagged abundance of Razorbills.
In all cases, the chosen model was that assuming the negative
binomial distribution; the AIC-values for the negative binomial
models were all much lower than those for the Poisson models.

Table 1 also shows themaximum likelihood pseudo-R2-values
to give an idea of how much variation in alcid abundance is
explained by the best models. Atlantic Puffin was the least well-
modeled, with a pseudo-R2-value of 0.15, while Razorbill showed
the highest pseudo-R2, of 0.88.

Residual analyses showed no clear pattern in the residuals
for any of the best models. Since the NAO index itself has a
positive trend over the timespan we studied (1954–2012, Hur-
rell and Dickson, 2004), our interpretation is that there are at
least two temporal scales over which variation in ocean climate
impact winter abundance of alcids offMassachusetts. Put another
way, our model shows that variation in winter abundance of
alcids offMassachusetts was significantly related to the combined
shorter-term and longer-term components of variation in NAO.

Black Guillemots and Razorbills occurred in high abundance
with positive NAO index values, whereas Dovekies and Thick-
billed Murres occurred in high abundance with negative NAO.
Thus, peak numbers of high-arctic Dovekies and Thick-billed
Murres tended to move south to Massachusetts in strongly
negative-NAO winters. Common Murre and Atlantic Puffin
show small but only borderline significant relationships to NAO
on an annual scale. Therefore, response by these birds to NAO
varied with the temporal scale at which they were analyzed.
The differing response to NAO shown by the different species
is reflected in the correlation of abundance among species: The
abundances of all species other than Dovekie were positively
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FIGURE 3 | (A–F) Winter abundance (raw time series) of alcids in Massachusetts over the period 1955–2012; (G) NAO over time, showing both trend and periodic

fluctuation.

correlated with one another, and that of Dovekie was negatively
correlated with those of the other five species (Table 2).

Discussion

Winter alcid abundance depends significantly on NAO, which
in turn shows both a long-term (∼50 year) trend and shorter
term periodicity (Figure 3). Thus, our analysis supports previ-
ous suggestions that climate acts upon seabirds at more than one
temporal scale (Schreiber, 2002; Jenouvrier et al., 2005; Veit and
Montevecchi, 2006; Irons et al., 2008). Here, we found that four
species vary with shorter term NAO fluctuations (Table 1), and
all six species vary with the longer-term NAO trend (Figure 3).

The data we have analyzed are on winter abundance. Changes
in abundance could reflect either distributional shifts, changes
in population size, or a combination of the two. Razorbills,
Common Murres, Atlantic Puffins, and perhaps Black Guille-
mots, are clearly increasing in abundance within their breeding
ranges and expanding southward into our study area (Chapde-
laine et al., 2001; Bond and Diamond, 2006; Regular et al., 2010).
The increase of Atlantic Puffins in our study area has been has-
tened by reintroduction of birds from Canada to breeding islands
in the Gulf of Maine (Kress and Nettleship, 1988). Whatever
the proximate cause of increased abundance off Massachusetts in
winter, the ultimate cause in most cases seems linked to variation
in oceanographic climate.
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TABLE 1 | Results of model selection for six alcid species wintering population numbers; sign of relationship with predictors given in best model.

Response Distribution Predictor 1 Predictor 2 Predictor 3 AIC Maximum likelihood

(Abundance of….) (significance) (significance) (significance) pseudo-R2

(best model only)

Black Guillemot Poisson Year (p < 0.001) 1805

Year (p < 0.001) NAO (p < 0.001) 1777

NAO (p < 0.001) 2538

+Year (p < 0.001) +NAO (p < 0.001) +BGt−1 (p < 0.001) 1476

Negative binomial Year (p < 0.001) 527

Year (p > 0.001) NAO 527

NAO (p < 0.01) 563

+Year (p < 0.001) +NAO (p < 0.05) +BGt−1 (p < 0.001) 508 0.68

Common Murre Poisson Year (p < 0.001) 2589

Year (p < 0.001) NAO (p < 0.001) 2560

NAO (p < 0.001) 5929

+Year (p < 0.001) −NAO (p < 0.001) −COMUt−1 (p < 0.001) 2514

Negative bionomial Year (p < 0.001) 380

Year (p < 0.001) NAO (ns) 381

NAO (ns) 433

+Year (p < 0.001) −NAO (ns) +COMUt−1 (ns) 379 0.64

Dovekie Poisson Year (p < 0.001) 139,081

Year (p < 0.001) NAO (p < 0.001) 133,047

NAO (p < 0.001) 163,429

−Year (p < 0.001) −NAO (p < 0.001) −DOVEt−1 (p < 0.001) 124,174

Negative binomial Year (p < 0.001) 787

Year (p < 0.05) NAO (p < 0.01) 784

NAO (p < 0.001) 787

−Year (p < 0.05) −NAO (p < 0.01) +DOVEt−1 (ns) 772 0.48

Atlantic Puffin Poisson Year (p < 0.001) 535

+Year (p < 0.001) +NAO (p < 0.05) 532

NAO (p < 0.001) 585

Year (p < 0.001) NAO (p < 0.05) PUFFt−1 (ns) 531

Negative binomial +Year (p < 0.001) 298 0.15

Year (p < 0.01) NAO (ns) 298

NAO (p < 0.05) 304

Year (p < 0.01) NAO (ns) PUFFt−1 (ns) 298

Razorbill Poisson Year (p < 0.001) 91,866

Year (p < 0.001) NAO (p < 0.001) 84,712

NAOt−1 (p < 0.001) 191,950

+Year (p < 0.001) −NAO (p < 0.001) −RAZOt−1 (p < 0.001) 71,114

+Year (p < 0.001) +NAOt−1 (p < 0.001) +RAZOt−1 (p < 0.001) 75,389

Negative binomial Year (p < 0.001) 898

Year (p < 0.001) NAO (ns) 900

NAOt−1 (p < 0.001) 936

Year (p < 0.001) NAO (ns) RAZOt−1 (ns) 850

+Year (p < 0.001) +NAOt−1 (p < 0.05) -RAZOt−1 (ns) 845 0.88

Thick-billed Murre Poisson Year (p < 0.001) 52,700

Year (p < 0.001) NAO (p < 0.001) 44,152

NAO (p < 0.001) 44,451

+Year (p < 0.001) −NAO (p < 0.001) −TBMUt−1 (p < 0.001) 43,526

Negative binomial Year (p < 0.1) 536

Year (ns) NAO (p < 0.001) 513

−NAO (p < 0.001) 512 0.36

+Year (ns) −NAO (p < 0.001) −TBMUt−1 (ns) 511

Boldface indicates the best model as judged by either lowest AIC value (in cases where AIC was lower than next-lowest by more than 2 units) or by least complex model (in cases where

models have low and tied or near-tied AIC values, e.g., Atlantic Puffin).
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TABLE 2 | Spearman rank correlation coefficients of abundance among species.

Razorbill Dovekie Common Murre Thick-billed Murre Black Guillemot Atlantic Puffin

Razorbill 1.0 −0.42 0.56 0.41 0.7 0.47

Dovekie −0.42 1.0 −0.09 −0.01 −0.45 −0.11

Common Murre 0.56 −0.09 1.0 0.34 0.53 0.51

Thick-billed Murre 0.41 −0.01 0.34 1.0 0.23 0.47

Black Guillemot 0.7 −0.45 0.53 0.23 1.0 0.37

Atlantic Puffin 0.47 −0.11 0.51 0.47 0.37 1.0

Boldface values are significant at p < 0.05.

Shifts in at-sea distribution of seabirds have previously been
linked to changing oceanic climate (Veit et al., 1996, 1997; Hyren-
bach andVeit, 2003; Péron et al., 2010). The presumption in these
studies is that ocean temperature is an index of productivity and
advection; consequently, warmer temperatures lead to lowered
primary productivity, and thus less secondary productivity and
food for seabirds. We postulate that the mechanism underlying
the changes in abundance we have described is change in abun-
dance or distribution of seabird prey, which in turn responds to
changing oceanic climate, as has been concluded in a number of
other recent studies (Frederiksen et al., 2004; Irons et al., 2008;
Sydeman et al., 2013) including changes in seabird distribution
(Veit et al., 1996, 1997; Gaston andWoo, 2008; Péron et al., 2010).

Razorbills feed on a variety of schooling fishes such as her-
ring and sand lance (Nettleship and Birkhead, 1985). There have
been negatively correlated fluctuations in the populations of
Atlantic Herring (Clupea harengus) and American Sand Lance
(Ammodytes americanus) over the period 1970-present (Sher-
man et al., 1981; Overholtz and Link, 2007, 2009), one sugges-
tion being these two plankton-feeding fishes replace one another
as one gets fished out. A major increase in sand lance in the
late 1970s was accompanied by very large numbers of seabirds,
including Razorbills, feeding upon them at the time (Veit and
Petersen, 1993). Increased abundance of Razorbills, Common
Murres, Thick-billed Murres, Black Guillemots, and Atlantic
Puffins in Massachusetts occurred during the 1970s (Figure 3) at
a time when a dramatic increase in sand lance was documented
in the area (Sherman et al., 1981; Veit and Petersen, 1993). Gas-
ton and Woo (2008) show how Razorbills have expanded their
breeding range into NW Canada following northward expansion
of Capelin (Mallotus vallosus) and sand lance (Ammodytes, spp.).

Both species of Murres and Atlantic Puffins, similarly to
Razorbills, eat schooling pelagic fishes including sand lance (Gas-
ton and Hipfner, 2000; Ainley et al., 2002; Lowther et al., 2002;
Bond and Diamond, 2006), and, though we lack dietary data
from these species in our study area, it seems reasonable that
part of their recent increases reflects increasing sandlance abun-
dance. Black Guillemots also eat fish, including sand lance, but
they feed in much more inshore waters than any of the other five
species and therefore also take a variety of benthic species (Butler
and Buckley, 2002). Dovekies are planktivorous (Montevecchi,
2002) and in this study region often focus their foraging over mid
shelf fronts where they aggregate over patches of copepods and
amphipods (Veit and Guris, 2008).

Another possible explanation for changes in population num-
bers is as a result of changes in fishery operations. Large num-
bers of alcids, especially Common Murres, are killed as by-catch
in gill nets (Montevecchi, 2002). A gill net fishery for Atlantic
Cod (Gadus morhua) and other groundfish in and around New-
foundland collapsed in 1992 due to the disappearance of cod,
and a corresponding increase in the Common Murre popula-
tion of Newfoundland has been at least partly attributed to this
factor (Regular et al., 2010). In the Massachusetts data, there is
a strong increase in Common Murre abundance at about this
same time (Figure 3), but there is also a parallel increase in
Dovekie abundance that seems unlikely to be related to reduced
mortality in gill nets. From the Massachusetts data considered
here, the increase in Razorbills seems to be longer term than
the increase in Common Murres, and there is little if any appar-
ent acceleration in the early 1990s. Thus, although the closing
of the Newfoundland cod fishery almost certainly helped alcid
numbers, there are other processes at work to explain changes
in numbers of both Dovekies and Razorbills. Finally, chronic
oil pollution and hunting, especially of Thick-billed Murres,
are likely to impact population growth of alcids (Wiese et al.,
2004).

Dovekies are planktivorous (Nettleship and Birkhead, 1985;
Gaston and Jones, 1998) while the other five species we stud-
ied feed mainly on fish (Gaston and Jones, 1998). This sug-
gests response to climatic oscillations at multiple trophic levels;
it should be noted that most alcid diet studies are on diet in
the breeding season, and little is known of their winter diets.
We know that seabird numbers respond both directly to cli-
mate (Schreiber, 2002; Nisbet et al., 2013), and directly to prey
base numbers, which may reflect an indirect response to climate
via the prey base (Durant et al., 2003; Frederiksen et al., 2004).
We have found here a strong response of alcids to climate (as
measured by NAO) at multiple timescales, and we can specu-
late knowledgably that this strong response is comprised of a
direct and indirect component. This is the first documentation
of alcid response to NAO, and gives greater weight to the impor-
tance of managing marine bird populations for their continued
persistence in the face of continued climate change.
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