1,340 research outputs found

    Emissions trading and the European electricity market: Consequences of emissions trading on prices of electricity and competitiveness of basic industries

    Get PDF
    In 2001 the European Commission proposed the introduction of a European system of trading in greenhouse gases. This proposal is currently subject to fierce debates. Opponents to the proposal of the Commission do not question the efficiency effects of emissions trading in general. The economic benefits of trading in emission permits compared to other instruments for climate policy are broadly recognized. Likely distributional effects of emissions trading, however, are the origin of fierce controversies. The European Commission has proposed a method of direct allocation while others, like representatives of large industries, plead for an indirect method. In the former approach, permits are distributed directly to the group of firms that emit the gases. End-users of energy receive their permits in the latter method. Emitters and end-users of energy are the same group of firms only when use of energy coincides directly with emissions. This is valid for the burning of natural gas for instance, but not for the generation and consumption of electricity. Emissions of carbon dioxide result from electricity production when power is generated by means of coal, oil, or gas fired plants. Consumption of electricity does not generate any emissions. Consequently, the direct allocation of permits implies that power plants receive the permits while electricity users obtain them when the indirect approach is followed. The debate on the method of allocation concerns its effects on the price of electricity and the competitiveness of large users of electricity. Questions that have to be answered are: ‘will power producers raise their prices if they obtain their permits free of charge?', and ‘to which extent does a rise in electricity price affect industries such as Steel, and Aluminium?'. The Netherlands' Committee ‘Allocating emission permits" has asked the CPB to answer these questions.

    Estimating specific inherent optical properties of tropical coastal waters using bio-optical model inversion and in situ measurements: case of the Berau estuary, East Kalimantan, Indonesia

    Get PDF
    Specific inherent optical properties (SIOP) of the Berau coastal waters were derived from in situ measurements and inversion of an ocean color model. Field measurements of water-leaving reflectance, total suspended matter (TSM), and chlorophyll a (Chl a) concentrations were carried out during the 2007 dry season. The highest values for SIOP were found in the turbid waters, decreasing in value when moving toward offshore waters. The specific backscattering coefficient of TSM varied by an order of magnitude and ranged from 0.003 m2 g-1, for clear open ocean waters, to 0.020 m2 g-1, for turbid waters. On the other hand, the specific absorption coefficient of Chl a was relatively constant over the whole study area and ranged from 0.022 m2 mg-1, for the turbid shallow estuary waters, to 0.027 m2 mg-1, for deeper shelf edge ocean waters. The spectral slope of colored dissolved organic matter light absorption was also derived with values ranging from 0.015 to 0.011 nm-1. These original derived values of SIOP in the Berau estuary form a corner stone for future estimation of TSM and Chl a concentration from remote sensing data in tropical equatorial water

    Participatory approach for integrated basin planning with focus on disaster risk reduction : the case of the Limpopo river

    Get PDF
    This paper defends the idea that a participatory approach is a suitable method for basin planning integrating both water and land aspects. Assertions made are based on scientific literature review and corroborated by field experience and research carried out in the Limpopo River basin, a transboundary river located in southern Africa which is affected by periodical floods. The paper explains how a basin strategic plan can be drafted and disaster risk reduction strategies derived by combining different types of activities using a bottom-up approach, despite an institutional context which operates through traditional top-down mechanisms. In particular, the "Living with Floods" experience in the lower Limpopo River, in Mozambique, is described as a concrete example of a disaster adaptation measure resulting from a participatory planning exercise. In conclusion, the adopted method and obtained results are discussed and recommendations are formulated for potential replication in similar contexts of the developing world

    Changes in land cover, rainfall and stream flow in Upper Gilgel Abbay catchment, Blue Nile basin – Ethiopia

    Get PDF
    In this study we evaluated changes in land cover and rainfall in the Upper Gilgel Abbay catchment in the Upper Blue Nile basin and how changes affected stream flow in terms of annual flow, high flows and low flows. Land cover change assessment was through classification analysis of remote sensing based land cover data while assessments on rainfall and stream flow data are by statistical analysis. Results of the supervised land cover classification analysis indicated that 50.9 % and 16.7 % of the catchment area was covered by forest in 1973 and 2001, respectively. This significant decrease in forest cover is mainly due to expansion of agricultural land. \ud \ud By use of a change detection procedure, three periods were identified for which changes in rainfall and stream flow were analyzed. Rainfall was analyzed at monthly base by use of the Mann-Kendall test statistic and results indicated a statistically significant, decreasing trend for most months of the year. However, for the wet season months of June, July and August rainfall has increased. In the period 1973–2005, the annual flow of the catchment decreased by 12.1 %. Low flow and high flow at daily base were analyzed by a low flow and a high flow index that is based on a 95 % and 5 % exceedance probability. Results of the low flow index indicated decreases of 18.1 % and 66.6 % for the periods 1982–2000 and 2001–2005 respectively. Results of high flows indicated an increase of 7.6 % and 46.6 % for the same periods. In this study it is concluded that over the period 1973–2005 stream flow has changed in the Gilgel Abbay catchment by changes in land cover and changes in rainfall

    Evaluating organochlorine pesticide residues in the aquatic environment of the Lake Naivasha River basin using passive sampling techniques

    Get PDF
    Abstract Passive sampling techniques can improve the discovery of low concentrations by continuous collecting the contaminants, which usually go undetected with classic and once-off time-point grab sampling. The aim of this study was to evaluate organochlorine pesticide (OCP) residues in the aquatic environment of the Lake Naivasha river basin (Kenya) using passive sampling techniques. Silicone rubber sheet and Speedisk samplers were used to detect residues of αHCH, β-HCH, γ-HCH, δ-HCH, heptachlor, aldrin, heptachlor epoxide, pp-DDE, endrin, dieldrin, α-endosulfan, β-endosulfan, pp-DDD, endrin aldehyde, ppDDT, endosulfan sulfate, and methoxychlor in the Malewa River and Lake Naivasha. After solvent extraction from the sampling media, the residues were analyzed using gas chromatography electron capture detection (GC-ECD) for the OCPs and gas chromatographymass spectrometry (GC-MS) for the PCB reference compounds. Measuring the OCP residues using the silicone rubber samplers revealed the highest concentration of residues (∑OCPs of 81 (± 18.9 SD) μg/L) to be at the Lake site, being the ultimate accumulation environment for surficial hydrological, chemical, and sediment transport through the river basin. The total OCP residue sums changed to 71.5 (± 11.3 SD) μg/L for the Middle Malewa and 59 (± 12.5 SD) μg/L for the Upper Malewa River sampling sites. The concentration sums of OCPs detected using the Speedisk samplers at the Upper Malewa, Middle Malewa, and the Lake Naivasha sites were 28.2 (± 4.2 SD), 31.3 (± 1.8 SD), and 34.2 (± 6.4 SD) μg/L, respectively. An evaluation of the different pesticide compound variations identified at the three sites revealed that endosulfan sulfate, α-HCH, methoxychlor, and endrin aldehyde residues were still found at all sampling sites. However, the statistical analysis of one-way ANOVA for testing the differences of ∑OCPs between the sampling sites for both the silicone rubber sheet and Speedisk samplers showed that there was no significant difference from the Upper Malewa to the Lake site (P < 0.05). Finally, the finding of this study indicated that continued monitoring of pesticides residues in the catchment remains highly recommende

    Technique for validating remote sensing products of water quality

    Get PDF
    Remote sensing of water quality is initiated as an additional part of the on going activities of the EAGLE2006 project. Within this context intensive in-situ and airborne measurements campaigns were carried out over the Wolderwijd and Veluwemeer natural waters. However, in-situ measurements and image acquisitions were not simultaneous. This poses some constraints on validating air/space-borne remote sensing products of water quality. Nevertheless, the detailed insitu measurements and hydro-optical model simulations provide a bench mark for validating remote sensing products. That is realized through developing a stochastic technique to quantify the uncertainties on the retrieved aquatic inherent optical properties (IOP). The output of the proposed technique is applied to validate remote sensing products of water quality. In this processing phase, simulations of the radiative transfer in the coupled atmosphere-water system are performed to generate spectra at-sensor-level. The upper and the lower boundaries of perturbations, around each recorded spectrum, are then modelled as function of residuals between simulated and measured spectra. The perturbations are parameterized as a function of model approximations/inversion, sensor-noise and atmospheric residual signal. All error sources are treated as being of stochastic nature. Three scenarios are considered: spectrally correlated (i.e. wavelength dependent) perturbations, spectrally uncorrelated perturbations and a mixed scenario of the previous two with equal probability of occurrence. Uncertainties on the retrieved IOP are quantified with the relative contribution of each perturbation component to the total error budget of the IOP. This technique can be used to validate earth observation products of water quality in remote areas where few or no in– situ measurements are available
    corecore