550 research outputs found

    Dynamic Dilatonic Domain Walls

    Get PDF
    Motivated by the ``universe as a brane'' idea, we investigate the motion of a (D2)(D-2)-brane (or domain wall) that couples to bulk matter. Usually one would expect the spacetime outside such a wall to be time dependent however we show that in certain cases it can be static, with consistency of the Israel equations yielding relationships between the bulk metric and matter that can be used as ans\"atze to solve the Einstein equations. As a concrete model we study a domain wall coupled to a bulk dilaton with Liouville potentials for the dilaton both in the bulk and on the wall. The bulk solutions we find are all singular but some have black hole or cosmological horizons, beyond which our solutions describe domain walls moving in time dependent bulks. A significant period of world volume inflation occurs if the potential on the wall is not too steep; in some cases the bulk also inflates (with the wall comoving) while in others the wall moves relative to a non-inflating bulk. We apply our method to obtain cosmological solutions of Ho\v{r}ava-Witten theory compactified on a Calabi-Yau space. tive to a non-inflating bulk. We apply our method to obtain cosmological solutions of Ho\v{r}ava-Witten theory compactified on a Calabi-Yau space.Comment: 32 pages LaTeX, 5 .eps figures, corrected some typo

    DFR Perturbative Quantum Field theory on Quantum Space Time, and Wick Reduction

    Full text link
    We discuss the perturbative approach a` la Dyson to a quantum field theory with nonlocal self-interaction :phi*...*phi:, according to Doplicher, Fredenhagen and Roberts (DFR). In particular, we show that the Wick reduction of non locally time--ordered products of Wick monomials can be performed as usual, and we discuss a very simple Dyson diagram.Comment: 15 pages, pdf has active hyperlinks. To appear in the proceedings of the conference on "Rigorous quantum Field Theory", held at Saclay on July 19-21, 2004, on the occasion of Jacques Bros' 70th birthda

    Constraint on the heavy sterile neutrino mixing angles in the SO(10) model with double see-saw mechanism

    Full text link
    Constraints on the heavy sterile neutrino mixing angles are studied in the framework of a minimal supersymmetric SO(10){\rm SO}(10) model with {\it double see-saw mechanism}. A new singlet matter in addition to the right-handed neutrinos is introduced to realize the double see-saw mechanism. The minimal SO(10){\rm SO}(10) model gives an unambiguous Dirac neutrino mass matrix, which enables us to predict the masses and the mixing angles in the enlarged 9×99 \times 9 neutrino mass matrix. Mixing angles between the light Majorana neutrinos and the heavy sterile neutrinos are shown to be within the LEP experimental bound on all ranges of the Majorana phases.Comment: 16 pages, 4 figures; the version to be published in Eur. Phys. J.

    Coronal Shock Waves, EUV waves, and their Relation to CMEs. II. Modeling MHD Shock Wave Propagation Along the Solar Surface, Using Nonlinear Geometrical Acoustics

    Full text link
    We model the propagation of a coronal shock wave, using nonlinear geometrical acoustics. The method is based on the Wentzel-Kramers-Brillouin (WKB) approach and takes into account the main properties of nonlinear waves: i) dependence of the wave front velocity on the wave amplitude, ii) nonlinear dissipation of the wave energy, and iii) progressive increase in the duration of solitary shock waves. We address the method in detail and present results of the modeling of the propagation of shock-associated extreme-ultraviolet (EUV) waves as well as Moreton waves along the solar surface in the simplest solar corona model. The calculations reveal deceleration and lengthening of the waves. In contrast, waves considered in the linear approximation keep their length unchanged and slightly accelerate.Comment: 15 pages, 7 figures, accepted for publication in Solar Physic

    TeV-scale seesaw from a multi-Higgs model

    Full text link
    We suggest new simple model of generating tiny neutrino masses through a TeV-scale seesaw mechanism without requiring tiny Yukawa couplings. This model is a simple extension of the standard model by introducing extra one Higgs singlet, and one Higgs doublet with a tiny vacuum expectation value. Experimental constraints, electroweak precision data and no large flavor changing neutral currents, are satisfied since the extra doublet only has a Yukawa interaction with lepton doublets and right-handed neutrinos, and their masses are heavy of order a TeV-scale. Since active light neutrinos are Majorana particles, this model predicts a neutrinoless double beta decay.Comment: 21 pages, 8 figure

    Neutrino oscillation parameters from MINOS, ICARUS and OPERA combined

    Get PDF
    We perform a detailed analysis of the capabilities of the MINOS, ICARUS and OPERA experiments to measure neutrino oscillation parameters at the atmospheric scale with their data taken separately and in combination. MINOS will determine Δm322\Delta m^2_{32} and sin22θ23\sin^2 2\theta_{23} to within 10% at the 99% C.L. with 10 kton-years of data. While no one experiment will determine sin22θ13\sin^2 2\theta_{13} with much precision, if its value lies in the combined sensitivity region of the three experiments, it will be possible to place a lower bound of O(0.01) at the 95% C.L. on this parameter by combining the data from the three experiments. The same bound can be placed with a combination of MINOS and ICARUS data alone.Comment: Version to appear in PR

    Proton Decay in a Minimal SUSY SO(10) Model for Neutrino Mixings

    Full text link
    A minimal renormalizable SUSY SO(10) model with B-L symmetry broken by {\bf 126} Higgs field has recently been shown to predict all neutrino mixings and the ratio Δm2/ΔmA2\Delta m^2_{\odot}/\Delta m^2_A in agreement with observations. Unlike models where B-L is broken by {\bf 16} Higgs, this model guarantees automatic R-parity conservation and hence a stable dark matter as well as the absence of dim=4 baryon violating operator without any additional symmetry assumptions. In this paper, we discuss the predictions of the model for proton decay induced at the GUT scale. We scan over the parameter space of the model allowed by neutrino data and find upper bounds on the partial lifetime for the modes τ(nπ0νˉ)= 2τ(pπ+νˉ)(5.713)×1032\tau(n\to \pi^0\bar{\nu})=~2\tau(p\to \pi^+\bar{\nu})\leq (5.7-13)\times 10^{32} yrs and τ(nK0νˉ)2.97×1033\tau(n\to K^0\bar{\nu})\leq 2.97\times 10^{33} yrs for the average squark mass of a TeV and wino mass of 200 GeV, when the parameters satisfy the present lower limits on τ(pK+νˉ)\tau(p\to K^+\bar{\nu}) mode. These results can be used to test the model.Comment: 17 pages, 6 figures; Minor corrections with improved predictions; references update

    Measuring the Spectra of High Energy Neutrinos with a Kilometer-Scale Neutrino Telescope

    Get PDF
    We investigate the potential of a future kilometer-scale neutrino telescope such as the proposed IceCube detector in the South Pole, to measure and disentangle the yet unknown components of the cosmic neutrino flux, the prompt atmospheric neutrinos coming from the decay of charmed particles and the extra-galactic neutrinos, in the 10 TeV to 1 EeV energy range. Assuming a power law type spectra, dϕν/dEναEνβd\phi_\nu/dE_\nu \sim \alpha E_\nu^\beta, we quantify the discriminating power of the IceCube detector and discuss how well we can determine magnitude (α\alpha) as well as slope (β\beta) of these two components of the high energy neutrino spectrum, taking into account the background coming from the conventional atmospheric neutrinos.Comment: 21 pages, 7 figure

    A renormalizable SO(10) GUT scenario with spontaneous CP violation

    Full text link
    We consider fermion masses and mixings in a renormalizable SUSY SO(10) GUT with Yukawa couplings of scalar fields in the representation 10 + 120 + 126 bar. We investigate a scenario defined by the following assumptions: i) A single large scale in the theory, the GUT scale. ii) Small neutrino masses generated by the type I seesaw mechanism with negligible type II contributions. iii) A suitable form of spontaneous CP breaking which induces hermitian mass matrices for all fermion mass terms of the Dirac type. Our assumptions define an 18-parameter scenario for the fermion mass matrices for 18 experimentally known observables. Performing a numerical analysis, we find excellent fits to all observables in the case of both the normal and inverted neutrino mass spectrum.Comment: 16 pages, two eps figure

    Thermodynamic and gravitational instability on hyperbolic spaces

    Get PDF
    We study the properties of anti--de Sitter black holes with a Gauss-Bonnet term for various horizon topologies (k=0, \pm 1) and for various dimensions, with emphasis on the less well understood k=-1 solution. We find that the zero temperature (and zero energy density) extremal states are the local minima of the energy for AdS black holes with hyperbolic event horizons. The hyperbolic AdS black hole may be stable thermodynamically if the background is defined by an extremal solution and the extremal entropy is non-negative. We also investigate the gravitational stability of AdS spacetimes of dimensions D>4 against linear perturbations and find that the extremal states are still the local minima of the energy. For a spherically symmetric AdS black hole solution, the gravitational potential is positive and bounded, with or without the Gauss-Bonnet type corrections, while, when k=-1, a small Gauss-Bonnet coupling, namely, \alpha << {l}^2 (where l is the curvature radius of AdS space), is found useful to keep the potential bounded from below, as required for stability of the extremal background.Comment: Shortened to match published (PRD) version, 18 pages, several eps figure
    corecore