2,904 research outputs found
Large harmonic softening of the phonon density of states of uranium
Phonon density-of-states curves were obtained from inelastic neutron scattering spectra from the three crystalline phases of uranium at temperatures from 50 to 1213 K. The alpha -phase showed an unusually large thermal softening of phonon frequencies. Analysis of the vibrational power spectrum showed that this phonon softening originates with the softening of a harmonic solid, as opposed to vibrations in anharmonic potentials. It follows that thermal excitations of electronic states are more significant thermodynamically than are the classical volume effects. For the alpha-beta and beta-gamma phase transitions, vibrational and electronic entropies were comparable
Effect of exotic S=+1 resonances on scattering data
We consider the effect of an exotic S=+1 resonance on the
scattering of neutral kaons off protons. Explicit results are presented for the
total cross sections.Comment: 2 pages, 3 figure
Tests of an NACA 66,2-420 Airfoil of 5-Foot Chord at High Speed, Special Report
This report covers tests of a 5-foot model of the NACA 66,2-420 low-drag airfoil at high speeds including the critical compressibility speed. Section coefficients of lift, drag, and pitching moment, and extensive pressure-distribution data are presented. The section drag coefficient at the design lift coefficient of 0.4 increased from 0.0042 at low speeds to 0.0052 at a Mach number of 0.56 (390 mph at 25,000 ft altitude). The critical Mach number was about 0.60. The results cover a Reynold number range from 4 millions to 17 millions
Gordon Valentine Manley and his contribution to the study of climate change: a review of his life and work
British climatologist and geographer, Gordon Manley (1902–1980), is perhaps best known for his pioneering work on climate variability in the UK, for establishing the Central England Temperature series and, for his pivotal role in demonstrating the powerful relationship between climate, weather, and culture in post-World War II Britain. Yet Manley made many contributions, both professional and popular, to climate change debates in the twentieth century, where climate change is broadly understood to be changes over a range of temporal and spatial scales rather than anthropogenic warming per se. This review first establishes how Manley's work, including that on snow and ice, was influenced by key figures in debates over climatic amelioration around the North Atlantic between 1920s and 1950s. His research exploring historical climate variability in the UK using documentary sources is then discussed. His perspectives on the relationship between climate changes and cultural history are reviewed, paying particular attention to his interpretation of this relationship as it played out in the UK. Throughout, the review aims to show Manley to be a fieldworker and an empiricist and reveals how he remained committed to rigorous scientific investigation despite changing trends within his academic discipline
Length scale dependence of dynamical heterogeneity in a colloidal fractal gel
We use time-resolved dynamic light scattering to investigate the slow
dynamics of a colloidal gel. The final decay of the average intensity
autocorrelation function is well described by , with and
decreasing from 1.5 to 1 with increasing . We show that the dynamics is not
due to a continuous ballistic process, as proposed in previous works, but
rather to rare, intermittent rearrangements. We quantify the dynamical
fluctuations resulting from intermittency by means of the variance
of the instantaneous autocorrelation function, the analogous of
the dynamical susceptibility studied in glass formers. The amplitude
of is found to grow linearly with . We propose a simple --yet
general-- model of intermittent dynamics that accounts for the dependence
of both the average correlation functions and .Comment: Revised and improved, to appear in Europhys. Let
Microstructural strain energy of α-uranium determined by calorimetry and neutron diffractometry
The microstructural contribution to the heat capacity of α-uranium was determined by measuring the heat-capacity difference between polycrystalline and single-crystal samples from 77 to 320 K. When cooled to 77 K and then heated to about 280 K, the uranium microstructure released (3±1) J/mol of strain energy. On further heating to 300 K, the microstructure absorbed energy as it began to redevelop microstrains. Anisotropic strain-broadening parameters were extracted from neutron-diffraction measurements on polycrystals. Combining the strain-broadening parameters with anisotropic elastic constants from the literature, the microstructural strain energy is predicted in the two limiting cases of statistically isotropic stress and statistically isotropic strain. The result calculated in the limit of statistically isotropic stress was (3.7±0.5) J/mol K at 77 K and (1±0.5) J/mol at room temperature. In the limit of statistically isotropic strain, the values were (7.8±0.5) J/mol K at 77 K and (4.5±0.5) J/mol at room temperature. In both cases the changes in the microstructural strain energy showed good agreement with the calorimetry
- …