24 research outputs found

    Case of acute pulmonary embolism in post pneumonectomy-a rare clinical presentation and management

    Get PDF
    With a history of right pneumonectomy, pulmonary embolism affecting bilateral pulmonary artery is rare and needs to be meticulously managed to prevent pulmonary infarction of the normal lung with a clinical decision regarding thrombolysis. A 64 years male diabetic and hypertensive with a history of right pneumonectomy 10 years back, presented to ER with dyspnea and 2 episodes of syncope with right leg pain and swelling for 3 days. BP was 140/90mmHg and pulse rate of 100/min. SPO2 in room air was 95%. ECG suggested S1Q3T3 with sinus tachycardia. Echocardiogram revealed features of pulmonary embolism. Venous doppler of right leg showed DVT and CT Pulmonary angiogram was suggestive of pulmonary embolism. High-sensitive troponin I and NT-pro BNP were negative. Diagnosis of submassive pulmonary embolism was made. Protecting the normal lung from infarction was of paramount importance. There was no indication for thrombolysis. Treatment with LMWH was initiated and overlapped with the novel oral anticoagulant (NOAC) dabigatran. Symptomatically patient improved along with a reduction in pulmonary arterial hypertension and improved RV function. Post pneumonectomy of one lung, protecting the normal lung from infarction is utmost important in a setting of pulmonary embolism. It is a rare case scenario. Clinical decision regarding thrombolysis should be taken carefully. In this case thrombolysis was not indicated as per guidelines. LMWH, oral anticoagulation and broad-spectrum antibiotic to prevent secondary lung infection are the mainstay in the treatment of submassive pulmonary embolism where thrombolysis is not indicated

    RECK suppresses interleukin-17/TRAF3IP2-mediated MMP-13 activation and human aortic smooth muscle cell migration and proliferation

    Get PDF
    Sustained inflammation and matrix metalloproteinase (MMP) activation contribute to vascular occlusive/proliferative disorders. Interleukin-17 (IL-17) is a proinflammatory cytokine that signals mainly via TRAF3 Interacting Protein 2 (TRAF3IP2), an upstream regulator of various critical transcription factors, including AP-1 and NF-κB. Reversion inducing cysteine rich protein with kazal motifs (RECK) is a membrane-anchored MMP inhibitor. Here we investigated whether IL-17A/TRAF3IP2 signaling promotes MMP-13-dependent human aortic smooth muscle cell (SMC) proliferation and migration, and determined whether RECK overexpression blunts these responses. Indeed, IL-17A treatment induced (a) JNK, p38 MAPK, AP-1, NF-κB, and CREB activation, (b) miR-21 induction, (c) miR-27b and miR-320 inhibition, (d) MMP-13 expression and activation, (e) RECK suppression, and (f) SMC migration and proliferation, all in a TRAF3IP2-dependent manner. In fact, gain of TRAG3IP2 function, by itself, induced MMP-13 expression and activation, and RECK suppression. Furthermore, treatment with recombinant MMP-13 stimulated SMC migration in part via ERK activation. Importantly, RECK gain-of-function attenuated MMP-13 activity without affecting its mRNA or protein levels, and inhibited IL-17A- and MMP-13-induced SMC migration. These results indicate that increased MMP-13 and decreased RECK contribute to IL-17A-induced TRAF3IP2-dependent SMC migration and proliferation, and suggest that TRAF3IP2 inhibitors or RECK inducers have the potential to block the progression of neointimal thickening in hyperplastic vascular diseases

    Effect of aliskiren on post-discharge outcomes among diabetic and non-diabetic patients hospitalized for heart failure: insights from the ASTRONAUT trial

    Get PDF
    Aims The objective of the Aliskiren Trial on Acute Heart Failure Outcomes (ASTRONAUT) was to determine whether aliskiren, a direct renin inhibitor, would improve post-discharge outcomes in patients with hospitalization for heart failure (HHF) with reduced ejection fraction. Pre-specified subgroup analyses suggested potential heterogeneity in post-discharge outcomes with aliskiren in patients with and without baseline diabetes mellitus (DM). Methods and results ASTRONAUT included 953 patients without DM (aliskiren 489; placebo 464) and 662 patients with DM (aliskiren 319; placebo 343) (as reported by study investigators). Study endpoints included the first occurrence of cardiovascular death or HHF within 6 and 12 months, all-cause death within 6 and 12 months, and change from baseline in N-terminal pro-B-type natriuretic peptide (NT-proBNP) at 1, 6, and 12 months. Data regarding risk of hyperkalaemia, renal impairment, and hypotension, and changes in additional serum biomarkers were collected. The effect of aliskiren on cardiovascular death or HHF within 6 months (primary endpoint) did not significantly differ by baseline DM status (P = 0.08 for interaction), but reached statistical significance at 12 months (non-DM: HR: 0.80, 95% CI: 0.64-0.99; DM: HR: 1.16, 95% CI: 0.91-1.47; P = 0.03 for interaction). Risk of 12-month all-cause death with aliskiren significantly differed by the presence of baseline DM (non-DM: HR: 0.69, 95% CI: 0.50-0.94; DM: HR: 1.64, 95% CI: 1.15-2.33; P < 0.01 for interaction). Among non-diabetics, aliskiren significantly reduced NT-proBNP through 6 months and plasma troponin I and aldosterone through 12 months, as compared to placebo. Among diabetic patients, aliskiren reduced plasma troponin I and aldosterone relative to placebo through 1 month only. There was a trend towards differing risk of post-baseline potassium ≥6 mmol/L with aliskiren by underlying DM status (non-DM: HR: 1.17, 95% CI: 0.71-1.93; DM: HR: 2.39, 95% CI: 1.30-4.42; P = 0.07 for interaction). Conclusion This pre-specified subgroup analysis from the ASTRONAUT trial generates the hypothesis that the addition of aliskiren to standard HHF therapy in non-diabetic patients is generally well-tolerated and improves post-discharge outcomes and biomarker profiles. In contrast, diabetic patients receiving aliskiren appear to have worse post-discharge outcomes. Future prospective investigations are needed to confirm potential benefits of renin inhibition in a large cohort of HHF patients without D

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic

    Assessment of anemia and malnutrition among adolescent in Kalyan Karnataka region of Karnataka

    No full text
    Introduction: Malnutrition and anemia among adolescents are a daunting problem throughout the world, but the most affected are the children from low socioeconomic strata and less developed regions. Hence, the present study was focused on assessing the prevalence of malnutrition and degree of anemia among adolescents in the Kalyan Karnataka region. Methodology: A sample size of 660 was considered. The study was carried out from April to August 2022 in schools selected based on the random number table among children aged 10 to 19 after obtaining baseline socio demographic profile. The investigations included assessment of Body Mass Index (BMI). Hemoglobin was estimated by the micro hematocrit method using a hemoglobinometer. The data was analysed using the Statistical Package for the Social Sciences (SPSS) 26 version. Results: The prevalence of anemia among adolescents in our study was 37.7%, and underweight was 36.1%. Adolescent females had a higher prevalence of anemia (44.5%). The mean age of the adolescents was 14 years. Underweight was more common among males as compared to females. The factors significantly associated with anemia were female gender, orphans, low socioeconomic strata, early onset of menstruation, and irregular menorrhagia in menstruating females. Conclusion: Anemia among female adolescents needs to be addressed by including iron-fortified foods and supplements in the school meal program, specifically among the children belonging to low socioeconomic strata in the Kalyan Karnataka region. A detailed longitudinal study needs to be carried out to assess the ill effects of anemia and the impact of preventive strategies among adolescents

    A systematic review of CQ-resistant <i>Plasmodium vivax</i> malaria infections in India

    No full text
    Chloroquine (CQ) is the drug of choice for treating uncomplicated Plasmodium vivax (P. vivax) malaria in India. The knowledge about the exact burden of CQ resistance in P. vivax in India is scarce. Therefore, this systematic review aimed to assess the prevalence of CQ resistance in reported P. vivax cases from India. PubMed, EMBASE, and Web of Science, were searched using the search string: ‘Malaria AND vivax AND chloroquine AND (resistance OR resistant) AND India’. We systematically reviewed in-vivo and in-vitro drug efficacy studies that investigated the CQ efficacy of P. vivax malaria between January 1995 and December 2022. Those studies where patients were followed up for at least 28 days after initiation of treatment were included. We identified 12 eligible CQ therapeutic efficacy studies involving 2470 patients, Of these 2329 patients were assessed by in-vivo therapeutic efficacy methods and the remaining 141 were assessed by in-vitro methods. CQ resistance was found in 25/1787 (1.39%) patients from in-vivo and in 11/141 (7.8%) patients from in-vitro drug efficacy studies. Based on the available studies, the prevalence of CQ resistance in P. vivax was found to be relatively lower in India. However, continued surveillance and monitoring are crucial to identify the emergence of CQ resistance.</p
    corecore