53 research outputs found

    学会抄録

    Get PDF
    <p><b>Pod-IVR Pharmacokinetics in macaques</b> (A) <i>In vivo</i> release of TDF and FTC from each pod-IVR (N = 6/time point) over the course of the efficacy study determined by residual drug measurements from the pod-IVRs that were in place for 19 weeks with IVRs exchanged for new devices every 2 weeks. The top and bottom of the boxes show the 75th and 25th percentiles, respectively, and the line in the middle of the box is the median value. The dotted lines show the mean (N = 6) <i>in vivo</i> release from identical pod-IVRs obtained during the PK study preceding this efficacy study [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0157061#pone.0157061.ref026" target="_blank">26</a>]. (B) <i>In vivo</i> release profile for individual macaques (T1-T6) shows variability between animals. (C) TDF, TFV, TDF+TFV, and FTC levels in vaginal fluids collected at each ring exchange. Vaginal fluids were collected with Weck-Cel sponges proximal and distal to the pod-IVR placement. The dotted horizontal lines correspond to the medians from our previous PK study [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0157061#pone.0157061.ref026" target="_blank">26</a>]. Left panels-proximal; Right panels-distal; Dots-median.</p

    Comparison of the vaginal microbial communities in women with recurrent genital HSV receiving acyclovir intravaginal rings.

    No full text
    Vaginally administered antiviral agents may reduce the risk of HIV and HSV acquisition. Delivery of these drugs using intravaginal rings (IVRs) holds the potential benefits of improving adherence and decreasing systemic exposure, while maintaining steady-state drug levels in the vaginal tract. Elucidating how IVRs interact with the vaginal microbiome constitutes a critical step in evaluating the safety of these devices, as shifts the vaginal microbiome have been linked with several disease states. To date, clinical IVR trials have relied on culture-dependent methods that omit the high diversity of unculturable microbial population. Longitudinal, culture-independent characterization of the microbiota in vaginal samples from 6 women with recurrent genital HSV who used an acyclovir IVR was carried out and compared to the communities developing in biofilms on the IVR surface. The analysis utilized Illumina MiSeq sequence datasets generated from bar-coded amplicons of 16S rRNA gene fragments. Specific taxa in the vaginal communities of the study participants were found to be associated with the duration of recurrent genital HSV status and the number of HSV outbreaks. Taxonomic comparison of the vaginal and IVR biofilm communities did not reveal any significant differences, suggesting that the IVRs were not systematically enriched with members of the vaginal microbiome. Device usage did not alter the participants' vaginal microbial communities, within the confines of the current study design. Rigorous, molecular analysis of the effects of intravaginal devices on the corresponding microbial communities shows promise for integration with traditional approaches in the clinical evaluation of candidate products

    Phase I trial of pod-intravaginal rings delivering antiretroviral agents for HIV-1 prevention: Rectal drug exposure from vaginal dosing with tenofovir disoproxil fumarate, emtricitabine, and maraviroc.

    No full text
    BACKGROUND:Intravaginal rings (IVRs) can deliver antiretroviral (ARV) agents for HIV pre-exposure prophylaxis (PrEP), theoretically overcoming adherence concerns associated with frequent dosing. However, topical vaginal ARV drug delivery has not simultaneously led to sufficient rectal drug exposure to likely protect from HIV infection as a result of receptive anal intercourse (RAI). Unprotected RAI has a higher risk of infection per sex act and, for women, also can be associated with vaginal exposure during a single sexual encounter, especially in higher-risk subsets of women. The physiologically inflamed, activated, immune-cell dense colorectal mucosa is increasingly appreciated as the sexual compartment with highly significant risk; this risk is increased in the setting of co-infections. Ex vivo studies have shown that colorectal tissue and rectal fluid concentrations correlated with HIV protection. Given these important results, efforts to document colorectal compartment ARV drug concentration from pod-IVR delivery was assessed to determine if vaginal application could provide protective ARV levels in both compartments. METHODOLOGY/PRINCIPAL FINDINGS:A crossover clinical trial (N = 6) evaluated 7 d of continuous TDF pod-IVR use, a wash-out phase, followed by 7 d with a TDF-FTC pod-IVR. A subsequent clinical trial (N = 6) consisted of 7 d of continuous TDF-FTC-MVC pod-IVR use. Rectal fluids were collected on Day 7 at IVR removal in all three ARV-exposures (two Phase 1 trials) and drug concentrations quantified by LC-MS/MS. Median rectal fluid concentrations of TFV, the hydrolysis product of the prodrug TDF, were between 0.66 ng mg-1 (TDF pod-IVR group) and 1.11 ng mg-1 (TDF-FTC pod-IVR group), but below the analytical lower limit of quantitation in 5/6 samples in the TDF-FTC-MVC pod-IVR group. Unexpectedly, median FTC (TDF-FTC pod-IVR, 20.3 ng mg-1; TDF-FTC-MVC pod-IVR, 0.18 ng mg-1), and MVC rectal fluid concentrations (0.84 ng mg-1) were quantifiable and higher than their respective in vitro EC50 values in most samples. Due to participant burden in these exploratory trials, rectal fluid was used as a surrogate for rectal tissue, where drug concentrations are expected to be higher. CONCLUSIONS/SIGNIFICANCE:The concentrations of FTC and MVC in rectal fluids obtained in two exploratory clinical trials of IVRs delivering ARV combinations exceeded levels associated with in vitro efficacy in HIV inhibition. Unexpectedly, MVC appeared to depress the distribution of TFV and FTC into the rectal lumen. Here we show that vaginal delivery of ARV combinations may provide adherence and coitally independent dual-compartment protection from HIV infection during both vaginal and receptive anal intercourse

    Beta- Lactam Antibiotics Stimulate Biofilm Formation in Non-Typeable <i>Haemophilus influenzae</i> by Up-Regulating Carbohydrate Metabolism

    Get PDF
    <div><p>Non-typeable <i>Haemophilus influenzae</i> (NTHi) is a common acute otitis media pathogen, with an incidence that is increased by previous antibiotic treatment. NTHi is also an emerging causative agent of other chronic infections in humans, some linked to morbidity, and all of which impose substantial treatment costs. In this study we explore the possibility that antibiotic exposure may stimulate biofilm formation by NTHi bacteria. We discovered that sub-inhibitory concentrations of beta-lactam antibiotic (i.e., amounts that partially inhibit bacterial growth) stimulated the biofilm-forming ability of NTHi strains, an effect that was strain and antibiotic dependent. When exposed to sub-inhibitory concentrations of beta-lactam antibiotics NTHi strains produced tightly packed biofilms with decreased numbers of culturable bacteria but increased biomass. The ratio of protein per unit weight of biofilm decreased as a result of antibiotic exposure. Antibiotic-stimulated biofilms had altered ultrastructure, and genes involved in glycogen production and transporter function were up regulated in response to antibiotic exposure. Down-regulated genes were linked to multiple metabolic processes but not those involved in stress response. Antibiotic-stimulated biofilm bacteria were more resistant to a lethal dose (10 µg/mL) of cefuroxime. Our results suggest that beta-lactam antibiotic exposure may act as a signaling molecule that promotes transformation into the biofilm phenotype. Loss of viable bacteria, increase in biofilm biomass and decreased protein production coupled with a concomitant up-regulation of genes involved with glycogen production might result in a biofilm of sessile, metabolically inactive bacteria sustained by stored glycogen. These biofilms may protect surviving bacteria from subsequent antibiotic challenges, and act as a reservoir of viable bacteria once antibiotic exposure has ended.</p></div

    Global expression of molecular transporters in the human vaginal tract: implications for HIV chemoprophylaxis.

    Get PDF
    BACKGROUND:Pre-exposure chemoprophylaxis (PrECP) using antiretroviral agents is a promising strategy for the prevention of sexual HIV transmission in women. Molecular transporters in the human vaginal tract (VT) may play a pivotal role in determining drug disposition and, consequently, pharmacodynamic outcomes in these efforts. Little is known, however, on the expression of these transporters in vaginal tissues, representing a critical knowledge gap. METHODOLOGY/PRINCIPAL FINDINGS:Our study analyzed the genome-wide transcriptome in 44 vaginal tissue samples from 6 reproductive-age women undergoing gynecologic surgeries. The analysis revealed that, unexpectedly, a large number (43%) of gene isoforms corresponding to membrane transporters were over-expressed (above the median expression level) in all samples. A subset of 12 highly expressed membrane transporters was identified and contained 10 members (83%) of the solute carrier superfamily. The largest difference in membrane transporter gene expression was observed across subjects, but more subtle differential expression also was found along the anterior-posterior axis of the VT. Cross-validation of the microarray analyses with measurements RT-qPCR demonstrated high concordance between these data sets. Immunofluorescence labeling of membrane transporter proteins in vaginal tissues was highly dependent on tissue/cell types. CONCLUSIONS/SIGNIFICANCE:Antiretroviral PrECP drugs currently under evaluation are substrates for molecular transporters that were commonly expressed, but fell into both over- or under-expressed categories in all samples, suggesting a complex role for carrier-mediated processes in determining the disposition of these xenobiotics in vaginal tissues. These findings hold important implications for the successful development of products, either oral or intravaginal, for female-controlled HIV PrECP

    NTHi biofilms protect against a lethal dose of cefuroxime.

    No full text
    <p>Biofilms of NTHi strains 2019 and PittGG were formed overnight in the absence of antibiotic (Untreated), or in the presence of 170 ng/mL ampicillin (AMP), 230 ng/mL amoxicillin (AMOX) or 170 ng/mL cefuroxime (CEF). The amounts of antibiotic were chosen for their ability to stimulate biofilm formation in these two NTHi strains. After washing, the biofilms were exposed to 10 µg/mL of cefuroxime for a further 24 hr. The percentages of viable bacteria present in each biofilm are tabulated here. Not shown: planktonic NTHi bacteria are killed in the presence of 10 µg/mL cefuroxime. Although all of the formed biofilms (in the presence or absence of antibiotic) protected against cefuroxime, the amoxicillin-stimulated biofilm was able to protect bacteria from the lethal effects of the cefuroxime. p-values are documented in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0099204#pone.0099204.s003" target="_blank">Table S3</a>.</p

    PittGG biofilm formation is stimulated by ampicillin in a narrow concentration range.

    No full text
    <p>Crystal violet assay of 1-day PittGG biofilms, formed in the presence of increasing amounts of ampicillin up 300 ng/mL, showed a stimulation of biofilm formation at 170 ng/mL concentration.</p

    Biofilm formation is variable between NTHi strains.

    No full text
    <p>Biofilm quantification using crystal violet assay showed the variability in biofilm formation between the NTHi strains in this study. Relative Biofilm Quantity was measured as OD<sub>600</sub> of crystal violet in DMSO; higher absorbance indicated more biofilm production. The PittAA and PittEE strains showed the least amount of biofilm attachment to the growth surface while PittII showed the most. The other three strains (2019, 9274 and PittGG) formed intermediate amounts of biofilm material (t-test analysis in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0099204#pone.0099204.s002" target="_blank">Table S2</a>).</p
    corecore