122 research outputs found

    Pamidronic acid and cabergoline as effective long-term therapy in a 12-year-old girl with extended facial polyostotic fibrous dysplasia, prolactinoma and acromegaly in McCune-Albright syndrome: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>McCune-Albright syndrome is a complex inborn disorder due to early embryonal postzygotic somatic activating mutations in the <it>GNAS</it>1 gene. The phenotype is very heterogeneous and includes polyostotic fibrous dysplasia, typically involving the facial skull, numerous café-au-lait spots and autonomous hyperfunctions of several endocrine systems, leading to hyperthyroidism, hypercortisolism, precocious puberty and acromegaly.</p> <p>Case presentation</p> <p>Here, we describe a 12-year-old Caucasian girl with severe facial involvement of fibrous dysplasia, along with massive acromegaly due to growth hormone excess and precocious puberty, with a prolactinoma. Our patient was treated with a bisphosphonate and the prolactin antagonist, cabergoline, resulting in the inhibition of fibrous dysplasia and involution of both the prolactinoma and growth hormone excess. During a follow-up of more than two years, no severe side effects were noted.</p> <p>Conclusion</p> <p>Treatment with bisphosphonates in combination with cabergoline is a suitable option in patients with McCune-Albright syndrome, especially in order to circumvent surgical interventions in patients suffering from polyostotic fibrous dysplasia involving the skull base.</p

    In Vivo Tissue Regeneration with Robotic Implants

    Get PDF
    Robots that reside inside the body to restore or enhance biological function have long been a staple of science fiction. Creating such robotic implants poses challenges both in signaling between the implant and the biological host as well as in implant design. To investigate these challenges, we created a robotic implant to perform in vivo tissue regeneration via mechano-stimulation. The robot is designed to induce lengthening of tubular organs, such as the esophagus and intestines, by computer-controlled application of traction forces. Esophageal testing in swine demonstrates that the applied forces can induce cell proliferation and lengthening of the organ without a reduction in diameter, while the animal is awake, mobile and able to eat normally. Such robots can serve as research tools for studying mechanotransduction-based signaling and can also be employed clinically for conditions such as long-gap esophageal atresia and short bowel syndrome

    Neuronal mechanisms underlying innate and learned olfactory processing in Drosophila

    Get PDF
    Olfaction allows animals to adapt their behavior in response to different chemical cues in their environment. How does the brain efficiently discriminate different odors to drive appropriate behavior, and how does it flexibly assign value to odors to adjust behavior according to experience? This review traces neuronal mechanisms underlying these processes in adult Drosophila melanogaster from olfactory receptors to higher brain centers. We highlight neural circuit principles like lateral inhibition, segregation and integration of olfactory channels, temporal accumulation of sensory evidence, and compartmentalized synaptic plasticity underlying associative memory

    A Eulogy for Dr. Setti S. Rengachary, 1937-2008

    No full text

    Flight and Climbing Assay for Assessing Motor Functions in Drosophila

    No full text
    Motor control requires the central nervous system to integrate different sensory inputs and convey this information to the relevant central pattern generator for execution of motor function through motor neurons and muscles. Proper motor control is essential for any mobile organism to survive and interact with the external environment. For flying insects, motor control is required for flying, walking, feeding and mating apart from other more advanced behaviours such as grooming and aggression. Any perturbation to the sensory input or malfunctioning of neural connections to the motor output can result in motor defects. Here, we describe simple protocols for assessing flight and climbing ability of fruit flies, which can be used as two general tests to assess their motor function

    Monteris AXiiiS Stereotactic Miniframe for Intracranial Biopsy

    No full text
    corecore