7 research outputs found

    Trapping of three-dimensional electrons and transition to two-dimensional transport in the three-dimensional topological insulator Bi2Se3 under high pressure

    Get PDF
    [EN] This paper reports an experimental and theoretical investigation on the electronic structure of bismuth selenide (Bi2Se3) up to 9 GPa. The optical gap of Bi2Se3 increases from 0.17 eV at ambient pressure to 0.45 eV at 8 GPa. The quenching of the Burstein-Moss effect in degenerate samples and the shift of the free-carrier plasma frequency to lower energies reveal a quick decrease of the bulk three-dimensional (3D) electron concentration under pressure. On increasing pressure the behavior of Hall electron concentration and mobility depends on the sample thickness, consistently with a gradual transition from mainly 3D transport at ambient pressure to mainly two-dimensional (2D) transport at high pressure. Two-carrier transport equations confirm the trapping of high-mobility 3D electrons, an effect that can be related to a shallow-to-deep transformation of donor levels, associated with a change in the ordering of the conduction band minima. The high apparent areal density and low electron mobility of 2D electrons are not compatible with their expected properties in a Dirac cone. Measured transport parameters at high pressure are most probably affected by the presence of holes, either in an accumulation surface layer or as minority carriers in the bulk. ©2012 American Physical SocietyThis work has been done under financial support from Spanish MICINN under Grants No. MAT2008-06873-C02-02, No. MAT2007-66129, No. MAT2010-21270-C04-03/04, No. CSD2007-00045, and Prometeo No. GV2011/035. The supercomputer time has been provided by the Red Espanola de Supercomputacion (RES) and the MALTA cluster.Segura, A.; Panchal, V.; Sánchez-Royo, JF.; Marín-Borrás, V.; Muñoz-Sanjosé, V.; Rodríguez-Hernández, P.; Muñoz, A.... (2012). Trapping of three-dimensional electrons and transition to two-dimensional transport in the three-dimensional topological insulator Bi2Se3 under high pressure. Physical Review B. 85:195139-1-195139-9. https://doi.org/10.1103/PhysRevB.85.195139S195139-1195139-985Mishra, S. K., Satpathy, S., & Jepsen, O. (1997). Electronic structure and thermoelectric properties of bismuth telluride and bismuth selenide. Journal of Physics: Condensed Matter, 9(2), 461-470. doi:10.1088/0953-8984/9/2/014Hor, Y. S., Richardella, A., Roushan, P., Xia, Y., Checkelsky, J. G., Yazdani, A., … Cava, R. J. (2009). p-typeBi2Se3for topological insulator and low-temperature thermoelectric applications. Physical Review B, 79(19). doi:10.1103/physrevb.79.195208Zhang, H., Liu, C.-X., Qi, X.-L., Dai, X., Fang, Z., & Zhang, S.-C. (2009). Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nature Physics, 5(6), 438-442. doi:10.1038/nphys1270Hasan, M. Z., & Kane, C. L. (2010). Colloquium: Topological insulators. Reviews of Modern Physics, 82(4), 3045-3067. doi:10.1103/revmodphys.82.3045Moore, J. E. (2010). The birth of topological insulators. Nature, 464(7286), 194-198. doi:10.1038/nature08916Xia, Y., Qian, D., Hsieh, D., Wray, L., Pal, A., Lin, H., … Hasan, M. Z. (2009). Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nature Physics, 5(6), 398-402. doi:10.1038/nphys1274Chen, Y. L., Analytis, J. G., Chu, J.-H., Liu, Z. K., Mo, S.-K., Qi, X. L., … Shen, Z.-X. (2009). Experimental Realization of a Three-Dimensional Topological Insulator, Bi2Te3. Science, 325(5937), 178-181. doi:10.1126/science.1173034Hsieh, D., Xia, Y., Qian, D., Wray, L., Dil, J. H., Meier, F., … Hasan, M. Z. (2009). A tunable topological insulator in the spin helical Dirac transport regime. Nature, 460(7259), 1101-1105. doi:10.1038/nature08234Alpichshev, Z., Analytis, J. G., Chu, J.-H., Fisher, I. R., Chen, Y. L., Shen, Z. X., … Kapitulnik, A. (2010). STM Imaging of Electronic Waves on the Surface ofBi2Te3: Topologically Protected Surface States and Hexagonal Warping Effects. Physical Review Letters, 104(1). doi:10.1103/physrevlett.104.016401Roushan, P., Seo, J., Parker, C. V., Hor, Y. S., Hsieh, D., Qian, D., … Yazdani, A. (2009). Topological surface states protected from backscattering by chiral spin texture. Nature, 460(7259), 1106-1109. doi:10.1038/nature08308Butch, N. P., Kirshenbaum, K., Syers, P., Sushkov, A. B., Jenkins, G. S., Drew, H. D., & Paglione, J. (2010). Strong surface scattering in ultrahigh-mobilityBi2Se3topological insulator crystals. Physical Review B, 81(24). doi:10.1103/physrevb.81.241301Wang, Z., Lin, T., Wei, P., Liu, X., Dumas, R., Liu, K., & Shi, J. (2010). Tuning carrier type and density in Bi2Se3 by Ca-doping. Applied Physics Letters, 97(4), 042112. doi:10.1063/1.3473778Ren, Z., Taskin, A. A., Sasaki, S., Segawa, K., & Ando, Y. (2010). Large bulk resistivity and surface quantum oscillations in the topological insulatorBi2Te2Se. Physical Review B, 82(24). doi:10.1103/physrevb.82.241306Kulbachinskii, V. A., Miura, N., Nakagawa, H., Arimoto, H., Ikaida, T., Lostak, P., & Drasar, C. (1999). Conduction-band structure ofBi2−xSbxSe3mixed crystals by Shubnikov–de Haas and cyclotron resonance measurements in high magnetic fields. Physical Review B, 59(24), 15733-15739. doi:10.1103/physrevb.59.15733Analytis, J. G., McDonald, R. D., Riggs, S. C., Chu, J.-H., Boebinger, G. S., & Fisher, I. R. (2010). Two-dimensional surface state in the quantum limit of a topological insulator. Nature Physics, 6(12), 960-964. doi:10.1038/nphys1861Cho, S., Butch, N. P., Paglione, J., & Fuhrer, M. S. (2011). Insulating Behavior in Ultrathin Bismuth Selenide Field Effect Transistors. Nano Letters, 11(5), 1925-1927. doi:10.1021/nl200017fZhang, Y., He, K., Chang, C.-Z., Song, C.-L., Wang, L.-L., Chen, X., … Xue, Q.-K. (2010). Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit. Nature Physics, 6(8), 584-588. doi:10.1038/nphys1689Kong, D., Cha, J. J., Lai, K., Peng, H., Analytis, J. G., Meister, S., … Cui, Y. (2011). Rapid Surface Oxidation as a Source of Surface Degradation Factor for Bi2Se3. ACS Nano, 5(6), 4698-4703. doi:10.1021/nn200556hBenia, H. M., Lin, C., Kern, K., & Ast, C. R. (2011). Reactive Chemical Doping of theBi2Se3Topological Insulator. Physical Review Letters, 107(17). doi:10.1103/physrevlett.107.177602King, P. D. C., Hatch, R. C., Bianchi, M., Ovsyannikov, R., Lupulescu, C., Landolt, G., … Hofmann, P. (2011). Large Tunable Rashba Spin Splitting of a Two-Dimensional Electron Gas inBi2Se3. Physical Review Letters, 107(9). doi:10.1103/physrevlett.107.096802Hamlin, J. J., Jeffries, J. R., Butch, N. P., Syers, P., Zocco, D. A., Weir, S. T., … Maple, M. B. (2011). High pressure transport properties of the topological insulator Bi2Se3. Journal of Physics: Condensed Matter, 24(3), 035602. doi:10.1088/0953-8984/24/3/035602Köhler, H., & Hartmann, J. (1974). Burstein Shift of the Absorption Edge of nBi2Se3. physica status solidi (b), 63(1), 171-176. doi:10.1002/pssb.2220630116Panchal, V., Segura, A., & Pellicer-Porres, J. (2011). Low-cost set-up for Fourier-transform infrared spectroscopy in diamond anvil cell from 4000 to 400 cm−1. High Pressure Research, 31(3), 445-453. doi:10.1080/08957959.2011.594049Chervin, J. C., Canny, B., Besson, J. M., & Pruzan, P. (1995). A diamond anvil cell for IR microspectroscopy. Review of Scientific Instruments, 66(3), 2595-2598. doi:10.1063/1.1145594Piermarini, G. J., Block, S., Barnett, J. D., & Forman, R. A. (1975). Calibration of the pressure dependence of theR1ruby fluorescence line to 195 kbar. Journal of Applied Physics, 46(6), 2774-2780. doi:10.1063/1.321957Errandonea, D., Segura, A., Martínez-García, D., & Muñoz-San Jose, V. (2009). Hall-effect and resistivity measurements in CdTe and ZnTe at high pressure: Electronic structure of impurities in the zinc-blende phase and the semimetallic or metallic character of the high-pressure phases. Physical Review B, 79(12). doi:10.1103/physrevb.79.125203Errandonea, D., Martínez-García, D., Segura, A., Ruiz-Fuertes, J., Lacomba-Perales, R., Fages, V., … Mũnoz-San José, V. (2006). High-pressure electrical transport measurements on p-type GaSe and InSe. High Pressure Research, 26(4), 513-516. doi:10.1080/08957950601101787Hohenberg, P., & Kohn, W. (1964). Inhomogeneous Electron Gas. Physical Review, 136(3B), B864-B871. doi:10.1103/physrev.136.b864Kresse, G., & Hafner, J. (1993). Ab initiomolecular dynamics for liquid metals. Physical Review B, 47(1), 558-561. doi:10.1103/physrevb.47.558Kresse, G., & Hafner, J. (1994). Ab initiomolecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Physical Review B, 49(20), 14251-14269. doi:10.1103/physrevb.49.14251Kresse, G., & Furthmüller, J. (1996). Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 6(1), 15-50. doi:10.1016/0927-0256(96)00008-0Kresse, G., & Furthmüller, J. (1996). Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set. Physical Review B, 54(16), 11169-11186. doi:10.1103/physrevb.54.11169Blöchl, P. E. (1994). Projector augmented-wave method. Physical Review B, 50(24), 17953-17979. doi:10.1103/physrevb.50.17953Kresse, G., & Joubert, D. (1999). From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 59(3), 1758-1775. doi:10.1103/physrevb.59.1758Perdew, J. P., Ruzsinszky, A., Csonka, G. I., Vydrov, O. A., Scuseria, G. E., Constantin, L. A., … Burke, K. (2008). Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces. Physical Review Letters, 100(13). doi:10.1103/physrevlett.100.136406Mujica, A., Rubio, A., Muñoz, A., & Needs, R. J. (2003). High-pressure phases of group-IV, III–V, and II–VI compounds. Reviews of Modern Physics, 75(3), 863-912. doi:10.1103/revmodphys.75.863Köhler, H., & Becker, C. R. (1974). Optically Active Lattice Vibrations in Bi2Se3. physica status solidi (b), 61(2), 533-537. doi:10.1002/pssb.2220610218Vilaplana, R., Santamaría-Pérez, D., Gomis, O., Manjón, F. J., González, J., Segura, A., … Kucek, V. (2011). Structural and vibrational study of Bi2Se3under high pressure. Physical Review B, 84(18). doi:10.1103/physrevb.84.184110LaForge, A. D., Frenzel, A., Pursley, B. C., Lin, T., Liu, X., Shi, J., & Basov, D. N. (2010). Optical characterization ofBi2Se3in a magnetic field: Infrared evidence for magnetoelectric coupling in a topological insulator material. Physical Review B, 81(12). doi:10.1103/physrevb.81.125120Penn, D. R. (1962). Wave-Number-Dependent Dielectric Function of Semiconductors. Physical Review, 128(5), 2093-2097. doi:10.1103/physrev.128.2093PHILLIPS, J. C. (1970). Ionicity of the Chemical Bond in Crystals. Reviews of Modern Physics, 42(3), 317-356. doi:10.1103/revmodphys.42.317Van Vechten, J. A. (1969). Quantum Dielectric Theory of Electronegativity in Covalent Systems. I. Electronic Dielectric Constant. Physical Review, 182(3), 891-905. doi:10.1103/physrev.182.891Van Vechten, J. A. (1969). Quantum Dielectric Theory of Electronegativity in Covalent Systems. II. Ionization Potentials and Interband Transition Energies. Physical Review, 187(3), 1007-1020. doi:10.1103/physrev.187.1007Larson, P., Greanya, V. A., Tonjes, W. C., Liu, R., Mahanti, S. D., & Olson, C. G. (2002). Electronic structure ofBi2X3(X=S,Se,T)compounds:  Comparison of theoretical calculations with photoemission studies. Physical Review B, 65(8). doi:10.1103/physrevb.65.085108Chang, J., Jadaun, P., Register, L. F., Banerjee, S. K., & Sahu, B. (2011). Dielectric capping effects on binary and ternary topological insulator surface states. Physical Review B, 84(15). doi:10.1103/physrevb.84.155105Suski, T., Piotrzkowski, R., Wiśniewski, P., Litwin-Staszewska, E., & Dmowski, L. (1989). High pressure andDXcenters in heavily doped bulk GaAs. Physical Review B, 40(6), 4012-4021. doi:10.1103/physrevb.40.4012Errandonea, D., Segura, A., Sánchez-Royo, J. F., Mun-|Atoz, V., Grima, P., Chevy, A., & Ulrich, C. (1997). Investigation of conduction-band structure, electron-scattering mechanisms, and phase transitions in indium selenide by means of transport measurements under pressure. Physical Review B, 55(24), 16217-16225. doi:10.1103/physrevb.55.16217Analytis, J. G., Chu, J.-H., Chen, Y., Corredor, F., McDonald, R. D., Shen, Z. X., & Fisher, I. R. (2010). Bulk Fermi surface coexistence with Dirac surface state inBi2Se3: A comparison of photoemission and Shubnikov–de Haas measurements. Physical Review B, 81(20). doi:10.1103/physrevb.81.205407Köhler, H., & Fabbicius, A. (1975). Galvanomagnetic Properties of Bi2Se3with Free Carrier Densities below 5 × 1017 cm−3. physica status solidi (b), 71(2), 487-496. doi:10.1002/pssb.222071020

    Vórtices no estacionarios en un vaso de agua

    No full text
    ¿Quién no ha experimentado la formación de un vórtice o de un remolino en un vaso cuando disuelve el cacao en la leche y le da vueltas con una cuchara? En este artículo, se analizan los aspectos mecánicos de los vórtices no estacionarios formados cuando se agita agua con una cuchara alrededor de un eje central en un vaso de precipitados cilíndrico. Se mostrará que el vórtice no estacionario formado después de agitar el agua con la cuchara es de tipo forzado y se comparará la dinámica del fluido de este vórtice no estacionario con los conocidos vórtices libres estacionarios y forzados y con el de la dinámica del vórtice aislado libre (también conocido como el vórtice de Oseen-Lamb). Mostraremos que la observación de la generación y del decaimiento del vórtice no estacionario en el recipiente cilíndrico del agua en rotación es un simple experimento que puede constituir una experiencia muy fructífera para el entendimiento de los aspectos cinemáticos, dinámicos, y estáticos de la rotación axisimétrica, radial, o torsional de un fluido homogéneo e incompresible

    Cerebellar parcellation in schizophrenia and bipolar disorder

    Full text link
    [EN] Objective: The cerebellum is involved in cognitive processing and emotion control. Cerebellar alterations could explain symptoms of schizophrenia spectrum disorder (SZ) and bipolar disorder (BD). In addition, literature suggests that lithium might influence cerebellar anatomy. Our aim was to study cerebellar anatomy in SZ and BD, and investigate the effect of lithium. Methods: Participants from 7 centers worldwide underwent a 3T MRI. We included 182 patients with SZ, 144 patients with BD, and 322 controls. We automatically segmented the cerebellum using the CERES pipeline. All outputs were visually inspected. Results: Patients with SZ showed a smaller global cerebellar gray matter volume compared to controls, with most of the changes located to the cognitive part of the cerebellum (Crus II and lobule VIIb). This decrease was present in the subgroup of patients with recent-onset SZ. We did not find any alterations in the cerebellum in patients with BD. However, patients medicated with lithium had a larger size of the anterior cerebellum, compared to patients not treated with lithium. Conclusion: Our multicenter study supports a distinct pattern of cerebellar alterations in SZ and BD.This study was supported by public funding from Agence Nationale de la Recherche (ANR-11- IDEX-0004, ANR-11-INBS-006, ANR-14-CE35- 0035, ANR MNP VIP 2008), Deutsche Forschungsgemeinschaft (SFB636/C6 and We3638/3-1), Ministerstvo Zdravotnictv¿ Ceske Republiky (NV16- 32696A and NV16-32791A), National Institute of Mental Health (R01 MH076971) and Regione Veneto Italy (159/03, DGRV n. 4087).Laidi, C.; Hajeck, T.; Spaniel, F.; Kolenic, M.; D'albis, M.; Sarrazin, S.; Mangin, J.... (2019). Cerebellar parcellation in schizophrenia and bipolar disorder. Acta Psychiatrica Scandinavica. 140(5):468-476. https://doi.org/10.1111/acps.13087468476140

    Euclid. I. Overview of the Euclid mission

    No full text
    The current standard model of cosmology successfully describes a variety of measurements, but the nature of its main ingredients, dark matter and dark energy, remains unknown. Euclid is a medium-class mission in the Cosmic Vision 2015-2025 programme of the European Space Agency (ESA) that will provide high-resolution optical imaging, as well as near-infrared imaging and spectroscopy, over about 14,000 deg^2 of extragalactic sky. In addition to accurate weak lensing and clustering measurements that probe structure formation over half of the age of the Universe, its primary probes for cosmology, these exquisite data will enable a wide range of science. This paper provides a high-level overview of the mission, summarising the survey characteristics, the various data-processing steps, and data products. We also highlight the main science objectives and expected performance

    Euclid. I. Overview of the Euclid mission

    No full text
    International audienceThe current standard model of cosmology successfully describes a variety of measurements, but the nature of its main ingredients, dark matter and dark energy, remains unknown. Euclid is a medium-class mission in the Cosmic Vision 2015-2025 programme of the European Space Agency (ESA) that will provide high-resolution optical imaging, as well as near-infrared imaging and spectroscopy, over about 14,000 deg^2 of extragalactic sky. In addition to accurate weak lensing and clustering measurements that probe structure formation over half of the age of the Universe, its primary probes for cosmology, these exquisite data will enable a wide range of science. This paper provides a high-level overview of the mission, summarising the survey characteristics, the various data-processing steps, and data products. We also highlight the main science objectives and expected performance
    corecore