7 research outputs found

    Characterization of neutralizing human anti-tetanus monoclonal antibodies produced by stable cell lines

    Get PDF
    Please click Additional Files below to see the full abstract

    Advances and challenges in therapeutic monoclonal antibodies drug development

    Get PDF
    The use of serum containing polyclonal antibodies from animals immunized with toxins marked the beginning of the application of antibody-based therapy in late nineteenth century. Advances in basic research led to the development of the hybridoma technology in 1975. Eleven years later, the first therapeutic monoclonal antibody (mAb) was approved, and since then, driven by technological advances, the development of mAbs has played a prominent role in the pharmaceutical industry. In this review, we present the developments to circumvent problems of safety and efficacy arising from the murine origin of the first mAbs and generate structures more similar to human antibodies. As of October 2017, there are 61 mAbs and 11 Fc-fusion proteins in clinical use. An overview of all mAbs currently approved is provided, showing the development of sophisticated mAbs formats that were engineered based on the challenges posed by therapeutic indications, including antibody-drug conjugates (ADC) and glycoengineered mAbs. In the field of immunotherapy, the use of immunomodulators, bispecific mAbs and CAR-T cells are highlighted. As an example of promising therapy to treat infectious diseases, we discuss the generation of neutralizing monoclonal-oligoclonal antibodies obtained from human B cells. Scientific and technological advances represent mAbs successful translation to the clinic

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Advances and challenges in therapeutic monoclonal antibodies drug development

    Get PDF
    The use of serum containing polyclonal antibodies from animals immunized with toxins marked the beginning of the application of antibody-based therapy in late nineteenth century. Advances in basic research led to the development of the hybridoma technology in 1975. Eleven years later, the first therapeutic monoclonal antibody (mAb) was approved, and since then, driven by technological advances, the development of mAbs has played a prominent role in the pharmaceutical industry. In this review, we present the developments to circumvent problems of safety and efficacy arising from the murine origin of the first mAbs and generate structures more similar to human antibodies. As of October 2017, there are 61 mAbs and 11 Fc-fusion proteins in clinical use. An overview of all mAbs currently approved is provided, showing the development of sophisticated mAbs formats that were engineered based on the challenges posed by therapeutic indications, including antibody-drug conjugates (ADC) and glycoengineered mAbs. In the field of immunotherapy, the use of immunomodulators, bispecific mAbs and CAR-T cells are highlighted. As an example of promising therapy to treat infectious diseases, we discuss the generation of neutralizing monoclonal-oligoclonal antibodies obtained from human B cells. Scientific and technological advances represent mAbs successful translation to the clinic

    A Dual Strategy—In Vitro and In Silico—To Evaluate Human Antitetanus mAbs Addressing Their Potential Protective Action on TeNT Endocytosis in Primary Rat Neuronal Cells

    No full text
    Tetanus disease, caused by C. tetani, starts with wounds or mucous layer contact. Prevented by vaccination, the lack of booster shots throughout life requires prophylactic treatment in case of accidents. The incidence of tetanus is high in underdeveloped countries, requiring the administration of antitetanus antibodies, usually derived from immunized horses or humans. Heterologous sera represent risks such as serum sickness. Human sera can carry unknown viruses. In the search for human monoclonal antibodies (mAbs) against TeNT (Tetanus Neurotoxin), we previously identified a panel of mAbs derived from B-cell sorting, selecting two nonrelated ones that binded to the C-terminal domain of TeNT (HCR/T), inhibiting its interaction with the cellular receptor ganglioside GT1b. Here, we present the results of cellular assays and molecular docking tools. TeNT internalization in neurons is prevented by more than 50% in neonatal rat spinal cord cells, determined by quantitative analysis of immunofluorescence punctate staining of Alexa Fluor 647 conjugated to TeNT. We also confirmed the mediator role of the Synaptic Vesicle Glycoprotein II (SV2) in TeNT endocytosis. The molecular docking assays to predict potential TeNT epitopes showed the binding of both antibodies to the HCR/T domain. A higher incidence was found between N1153 and W1297 when evaluating candidate residues for conformational epitope

    Characterization of Neutralizing Human Anti-Tetanus Monoclonal Antibodies Produced by Stable Cell Lines

    No full text
    Tetanus toxin (TeNT) is produced by C. tetani, a spore-forming bacillus broadly spread in the environment. Although an inexpensive and safe vaccine is available, tetanus persists because of a lack of booster shots and variable responses to vaccines due to immunocompromised status or age-decreased immune surveillance. Tetanus is most prevalent in low- and medium-income countries, where it remains a health problem. Neutralizing monoclonal antibodies (mAbs) can prevent the severity of illness and death caused by C. tetani infection. We identified a panel of mAbs that bind to TeNT, some of which were investigated in a preclinical assay, showing that a trio of mAbs that bind to different sites of TeNT can neutralize the toxin and prevent symptoms and death in mice. We also identified two mAbs that can impair the binding of TeNT to the GT1b ganglioside receptor in neurons. In this work, to generate a series of cell lines, we constructed vectors containing sequences encoding heavy and light constant regions that can receive the paired variable regions resulting from PCRs of human B cells. In this way, we generated stable cell lines for five mAbs and compared and characterized the antibody produced in large quantities, enabling the characterization experiments. We present the results regarding the cell growth and viability in a fed-batch culture, titer measurement, and specific productivity estimation. The affinity of purified mAbs was analyzed by kinetics and under steady-state conditions, as three mAbs could not dissociate from TeNT within 36,000 s. The binding of mAbs to TeNT was confirmed by ELISA and inhibition of toxin binding to GT1b. The use of the mAbs mixture confirmed the individual mAb contribution to inhibition. We also analyzed the binding of mAbs to Fc&gamma;R by surface plasmon resonance (SPR) and the glycan composition. Molecular docking analyses showed the binding site of an anti-tetanus mAb
    corecore