49 research outputs found

    Pathogenicity of Metarhizium anisopliae (Metch) Sorok and Beauveria bassiana (Bals) Vuill to adult Phlebotomus duboscqi (Neveu-Lemaire) in the laboratory

    Get PDF
    Background & objectives: Biological control of sandflies using entomopathogenic fungi is a possible alternativeto the expensive synthetic chemical control. It is potentially sustainable, less hazardous, and relatively inexpensiveand merits further investigations. The objective of this study was to identify the most pathogenic fungal isolate(s)to sandflies in the laboratory.Methods: Isolates of entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana were screenedfor their pathogenicity against Phlebotomus duboscqi. Adult flies were contaminated using the technique describedby Migiro et al (2010). Briefly, flies were exposed to 0.1 g of dry conidia evenly spread on a cotton velvet clothcovering the inner side of a cylindrical plastic tube (95 mm long × 48 mm diam). In all 25 sandflies weretransferred into the cylindrical tube and allowed to walk on the velvet for one minute, after which they weretransferred from the velvet into the cages in Perplex. Insects in the control treatments were exposed to fungusfree velvet cloth before being transferred into similar cages. The treatments were maintained at 25 ± 2°C,60–70% RH and 12L: 12D photoperiod. The experiment was replicated 5 times. The most pathogenic isolateswere selected for further studies.Results: A total of 19 isolates were screened against adult sandflies in the laboratory. Mortality in the controlswas approximately 16.8 ± 1.7 %. All the isolates were found to be pathogenic to P. duboscqi. Mortality rangedbetween 76.8 and 100% on all the fungal isolates tested. The lethal time taken to 50% (LT50) and 90% (LT90(mortality ranged from 3.0–7.8 days and from 5.3–16.2 days, respectively. The virulent isolates, causing mortalitiesof 97.5–100%, were selected for further studies.Interpretation & conclusion: The high susceptibility of sandflies to entomopathogenic fungi suggests that fungiare potential alternatives to chemical control methods. We conclude that application of entomopathogenic fungicould result in acute mortalities of sandflies and reduction of parasite transmission and subsequently, reductionof leishmaniasis risk. This method of biological control has great potential as a new strategy for leishmaniasiscontro

    Optimizing Western Flower Thrips Management on French Beans by Combined Use of Beneficials and Imidacloprid

    Get PDF
    Western flower thrips (WFT), Frankliniella occidentalis (Pergande), is an important pest of vegetable crops worldwide and has developed resistance to many insecticides. The predatory mites Neoseiulus (=Amblyseius) cucumeris (Oudemans), the entomopathogenic fungus Metarhizium anisopliae (Metsch.), and an insecticide (imidacloprid) were tested for their efficacy to reduce WFT population density and damage to French bean (Phaseolus vulgaris L.) pods under field conditions in two planting periods. Metarhizium anisopliae was applied as a foliar spray weekly at a rate of one litre spray volume per plot while imidacloprid was applied as a soil drench every two weeks at a rate of two litres of a mixture of water and imidacloprid per m(2). Neoseiulus cucumeris was released every two weeks on plant foliage at a rate of three mites per plant. Single and combined treatment applications reduced WFT population density by at least three times and WFT damage to French bean pods by at least 1.7 times compared with untreated plots. The benefit-cost ratios in management of WFT were profitable with highest returns realized on imidacloprid treated plots. The results indicate that M. anisopliae, N. cucumeris, and imidacloprid have the potential for use in developing an integrated pest management program against WFT on French beans.BMZ/GIZ/07.7860.5-001.0

    Compatibility between Calpurnia aurea leaf extract, attraction aggregation, and attachment pheromone and entomopathogenic fungus Metarhizium anisopliae on viability, growth, and virulence of the pathogen

    Get PDF
    Metarhizium anisopliae sensu stricto (ss) (Metsch.) Sorok. isolate ICIPE 07 is being developed as biopesticide for the control of ticks. In addition, leaf extracts of Calpurnia aurea Benth, and the attraction aggregation and attachment pheromone (AAAP) are being used as ticks’ attractant. The three agents are being considered for use in combination in an autodissemination approach, whereby ticks that are attracted to semiochemicals are infected with the inoculum. Experiments were therefore conducted to evaluate in vitro the compatibility between C. aurea, AAAP, and the M. anisopliae on vegetative growth, conidial production, and spore viability. Calpurnia aurea leaf extract was compatible with the fungus at all the concentrations tested, whereas AAAP inhibited all the fungal growth parameters. The virulence of M. anisopliae formulated in emulsifiable extracts of C. aurea was also tested against different developmental stages of Rhipicephalus appendiculatus in laboratory bioassays. No significant differences in virulence were observed between M. anisopliae applied alone and M. anisopliae formulated in different concentrations of C. aurea leaf extracts. These results suggest that C. aurea leaf extracts is compatible with M. anisopliae and could be mixed together for “spot-spray” treatments as low-cost and environmental-friendly technology to control ticks in grazing field, while AAAP should be used separately.Bioscience Eastern and Central Africa Network (BecANet) and the Canadian International Development Agency (CIDA).http://link.springer.com/journal/10340hb2013mn201

    Advances in crop insect modelling methods—Towards a whole system approach

    Get PDF
    A wide range of insects affect crop production and cause considerable yield losses. Difficulties reside on the development and adaptation of adequate strategies to predict insect pests for their timely management to ensure enhanced agricultural production. Several conceptual modelling frameworks have been proposed, and the choice of an approach depends largely on the objective of the model and the availability of data. This paper presents a summary of decades of advances in insect population dynamics, phenology models, distribution and risk mapping. Existing challenges on the modelling of insects are listed; followed by innovations in the field. New approaches include artificial neural networks, cellular automata (CA) coupled with fuzzy logic (FL), fractal, multi-fractal, percolation, synchronization and individual/agent based approaches. A concept for assessing climate change impacts and providing adaptation options for agricultural pest management independently of the United Nations Intergovernmental Panel on Climate Change (IPCC) emission scenarios is suggested. A framework for estimating losses and optimizing yields within crop production system is proposed and a summary on modelling the economic impact of pests control is presented. The assessment shows that the majority of known insect modelling approaches are not holistic; they only concentrate on a single component of the system, i.e. the pest, rather than the whole crop production system. We suggest system thinking as a possible approach for linking crop, pest, and environmental conditions to provide a more comprehensive assessment of agricultural crop production.Peer reviewe

    Fungal entomopathogens: new insights on their ecology

    Get PDF
    An important mechanism for insect pest control should be the use of fungal entomopathogens. Even though these organisms have been studied for more than 100 y, their effective use in the field remains elusive. Recently, however, it has been discovered that many of these entomopathogenic fungi play additional roles in nature. They are endophytes, antagonists of plant pathogens, associates with the rhizosphere, and possibly even plant growth promoting agents. These findings indicate that the ecological role of these fungi in the environment is not fully understood and limits our ability to employ them successfully for pest management. In this paper, we review the recently discovered roles played by many entomopathogenic fungi and propose new research strategies focused on alternate uses for these fungi. It seems likely that these agents can be used in multiple roles in protecting plants from pests and diseases and at the same time promoting plant growth

    Optimizing modes of inoculation of Rhipicephalus ticks (Acari: Ixodidae) with a mitosporic entomopathogenic fungus in the laboratory

    Get PDF
    The process of strain selection is an important step in the development of insect pathogens for biological control. Bioassays were conducted in the laboratory to evaluate the efficacy of different methods of inoculation using Rhipicephalus pulchellus Gersta¨cker (Acari: Ixodidae) as a model. Initially, an oil-based formulation of Metarhizium anisopliae (Metsch.) Sorok. (Ascomycota: Hypocreales) titred at 109 conidia ml-1 was applied to R. pulchellus adults using a Burgerjon spray tower or a microapplicator. Inoculation by microapplicator yielded poor results (25.0% tick mortality) compared to Burgerjon’s spray tower (52.3% tick mortality), although the mean number of fungal conidia on R. pulchellus adults was lower (1.5 9 104 ± 1.1 9 103 conidia ml-1) after spraying by Burgerjon’s spray tower compared to 1 9 106 conidia ml-1 obtained with the microapplicator. Thus, inoculation by Burgerjon’s spray tower was selected for further investigations. Different modes of inoculation were tested and included direct spray of inoculum on the tick and substrate (SS), direct spray on the substrate and tick followed by transfer of the tick to clean uncontaminated Petri dish (SP) or indirect inoculation of ticks through substrate (SW). The LC50 values following contamination of nymphs (LC50 = 1.4 9 107 conidia ml-1) and adults (LC50 = 6.7 9 107 conidia ml-1) in SS were significantly lower compared to SP; nymphs (LC50 = 5.7 9 108 conidia ml-1) and adults (LC50 = 5.3 9 109 conidia ml-1) and SW; nymphs (LC50 = 5 9 108 conidia ml-1). Although the LC50 value in SS was the lowest, it recorded the highest tick mortality among control ticks (24.2% at 2 weeks post-treatment) and (23.3% at 3 weeks post-treatment) in nymphs and adults respectively compared to SP (2.5 and 5.8%, respectively) and SW (0.0 and 0.0). Results show that among the modes of inoculation tested, SP was the most appropriate for inoculating R. pulchellus adults. SW and SP were identified as appropriate techniques for infecting the R. pulchellus nymphs with conidia formulated in oil

    The use of a semiochemical bait to enhance exposure of Amblyomma variegatum (Acari: Ixodidae) to Metarhizium anisopliae (Ascomycota: Hypocreales)

    No full text
    Experiments were conducted to explore the use of a semiochemical bait to enhance exposure of Amblyomma variegatum Fabricius (Acari: Ixodidae) to different formulations of the entomopathogenic fungus Metarhizium anisopliae (Metsch.) Sorok. (Ascomycota: Hypocreales). Initially, the relative efficacies of attraction-aggregation-attachment pheromone (AAAP), made up of o-nitrophenol, methyl salicylate and nonanoic acid in the ratio 2:1:8, 1-octen-3-ol and butyric acid, were evaluated in an olfactometer. Only AAAP and 1-octen-3-ol were found to elicit attractive responses to the tick. Simultaneous release of 1-octen-3-ol and AAAP together with CO2 from a trap in semifield plots attracted up to 94.0 ± 6% of adult ticks from a distance of 6 m, and up to 24.0 ± 5.1% from 8 m. Formulations of M. anisopliae (dry powder, oil, and emulsifiable) applied within the trap baited with AAAP, 1-octen-3-ol and CO2 resulted in high levels of contamination of the ticks attracted to the traps. However, 48 h after autoinoculation, 89.1 and 33.3% of conidia were lost in dry powder and oil formulations, respectively. Emulsifiable formulation showed least loss of propagules (17.1%). Samples of ticks attracted to the baited traps were transferred to plastic basins containing grass and maintained for 5 weeks. The experiment was conducted in rainy and dry seasons. Emulsifiable formulation gave the highest relative tick reduction in both seasons: 54.7 and 46.5% in rainy and dry seasons, respectively, followed by oil formulation (32.0 and 23.8%) and powder formulation (38.0 and 24.4%)
    corecore