468 research outputs found

    An acoustical study of the KIWI B nuclear rocket

    Get PDF
    Kiwi B nuclear rocket acoustics - sound pressure distribution, energy conversion, and power distributio

    Kinetic modelling of colonies of myxobacteria

    Get PDF
    A new kinetic model for the dynamics of myxobacteria colonies on flat surfaces is derived formally, and first analytical and numerical results are presented. The model is based on the assumption of hard binary collisions of two different types: alignment and reversal. We investigate two different versions: a) realistic rod-shaped bacteria and b) artificial circular shaped bacteria called Maxwellian myxos in reference to the similar simplification of the gas dynamics Boltzmann equation for Maxwellian molecules. The sum of the corresponding collision operators produces relaxation towards nematically aligned equilibria, i.e. two groups of bacteria polarized in opposite directions. For the spatially homogeneous model a global existence and uniqueness result is proved as well as exponential decay to equilibrium for special initial conditions and for Maxwellian myxos. Only partial results are available for the rod-shaped case. These results are illustrated by numerical simulations, and a formal discussion of the macroscopic limit is presented

    Multiple C-Terminal Tails within a Single \u3cem\u3eE. coli\u3c/em\u3e SSB Homotetramer Coordinate DNA Replication and Repair

    Get PDF
    Escherichia coli single-stranded DNA binding protein (SSB) plays essential roles in DNA replication, recombination and repair. SSB functions as a homotetramer with each subunit possessing a DNA binding domain (OB-fold) and an intrinsically disordered C-terminus, of which the last nine amino acids provide the site for interaction with at least a dozen other proteins that function in DNA metabolism. To examine how many C-termini are needed for SSB function, we engineered covalently linked forms of SSB that possess only one or two C-termini within a four-OB-fold “tetramer”. Whereas E. coli expressing SSB with only two tails can survive, expression of a single-tailed SSB is dominant lethal. E. coli expressing only the two-tailed SSB recovers faster from exposure to DNA damaging agents but accumulates more mutations. A single-tailed SSB shows defects in coupled leading and lagging strand DNA replication and does not support replication restart in vitro. These deficiencies in vitro provide a plausible explanation for the lethality observed in vivo. These results indicate that a single SSB tetramer must interact simultaneously with multiple protein partners during some essential roles in genome maintenance

    Geometric realizations of generalized algebraic curvature operators

    Full text link
    We study the 8 natural GL equivariant geometric realization questions for the space of generalized algebraic curvature tensors. All but one of them is solvable; a non-zero projectively flat Ricci antisymmetric generalized algebraic curvature is not geometrically realizable by a projectively flat Ricci antisymmetric torsion free connection

    Additive Equivalence in Turbulent Drag Reduction by Flexible and Rodlike Polymers

    Get PDF
    We address the "Additive Equivalence" discovered by Virk and coworkers: drag reduction affected by flexible and rigid rodlike polymers added to turbulent wall-bounded flows is limited from above by a very similar Maximum Drag Reduction (MDR) asymptote. Considering the equations of motion of rodlike polymers in wall-bounded turbulent ensembles, we show that although the microscopic mechanism of attaining the MDR is very different, the macroscopic theory is isomorphic, rationalizing the interesting experimental observations.Comment: 8 pages, PRE, submitte

    Large-Scale Dynamics of Self-propelled Particles Moving Through Obstacles: Model Derivation and Pattern Formation

    Get PDF
    We model and study the patterns created through the interaction of collectively moving self-propelled particles (SPPs) and elastically tethered obstacles. Simulations of an individual-based model reveal at least three distinct large-scale patterns: travelling bands, trails and moving clusters. This motivates the derivation of a macroscopic partial differential equations model for the interactions between the self-propelled particles and the obstacles, for which we assume large tether stiffness. The result is a coupled system of nonlinear, non-local partial differential equations. Linear stability analysis shows that patterning is expected if the interactions are strong enough and allows for the predictions of pattern size from model parameters. The macroscopic equations reveal that the obstacle interactions induce short-ranged SPP aggregation, irrespective of whether obstacles and SPPs are attractive or repulsive

    Large-scale dynamics of self-propelled particles moving through obstacles: model derivation and pattern formation

    Get PDF
    We model and study the patterns created through the interaction of collectively moving self-propelled particles (SPPs) and elastically tethered obstacles. Simulations of an individual-based model reveal at least three distinct large-scale patterns: travelling bands, trails and moving clusters. This motivates the derivation of a macroscopic partial differential equations model for the interactions between the self-propelled particles and the obstacles, for which we assume large tether stiffness. The result is a coupled system of non linear, non-local partial differential equations. Linear stability analysis shows that patterning is expected if the interactions are strong enough and allows for the predictions of pattern size from model parameters. The macroscopic equations reveal that the obstacle interactions induce short-ranged SPP aggregation, irrespective of whether obstacles and SPPs are attractive or repulsive

    Effect of the Predecessor and the Nitrogen Rate on Productivity and Essential Oil Content of Coriander (Coriandrum sativum L.) in Southeast Bulgaria

    Get PDF
    Received: May 31st, 2022 ; Accepted: August 13th, 2022 ; Published: September 19th, 2022 ; Correspondence: [email protected] (Coriandrum sativum L.) is one of the most important essential oil crops on a global scale. Coriander productivity is determined by the genotype, the environmental factors, as well the agronomic practices. A field experiment was conducted in Southeast Bulgaria during three vegetation seasons (2015, 2016, and 2017). The present study aimed at analysing the influence of two crop predecessors (winter wheat and sunflower) and four nitrogen (N) levels (0, 40, 80, and 120 kg ha-1 ). Productivity elements, seed yield, and seed essential oil content of coriander (cv. Mesten drebnoploden) were under evaluation. The results obtained showed that winter wheat was a more suitable predecessor of coriander in comparison to sunflower. The highest results regarding the number of umbels per plant, the umbel’s diameter, the number of umbellets per umbel, the number of seeds per umbel, the seed weight per plant, the 1,000 seed mass, as well as the seed yield for the rate of 80 kg ha-1 of N were recorded. The highest essential oil content after applying 120 kg ha-1 of N was established. Increasing the N level from 0 to 120 kg ha-1 led to a positive and significant effect on essential oil yield. No significant differences between the N rates of 80 and 120 kg ha-1 were recorded. The received results contributed for the evaluatation of the optimum nitrogen level, as well as for the determination of a more suitable predecessor of coriander in order to obtain the highest yield of better quality in the region of Southeast Bulgaria

    Stress‐response balance drives the evolution of a network module and its host genome

    Get PDF
    Stress response genes and their regulators form networks that underlie drug resistance. These networks often have an inherent tradeoff: their expression is costly in the absence of stress, but beneficial in stress. They can quickly emerge in the genomes of infectious microbes and cancer cells, protecting them from treatment. Yet, the evolution of stress resistance networks is not well understood. Here, we use a two‐component synthetic gene circuit integrated into the budding yeast genome to model experimentally the adaptation of a stress response module and its host genome in three different scenarios. In agreement with computational predictions, we find that: (i) intra‐module mutations target and eliminate the module if it confers only cost without any benefit to the cell; (ii) intra‐ and extra‐module mutations jointly activate the module if it is potentially beneficial and confers no cost; and (iii) a few specific mutations repeatedly fine‐tune the module's noisy response if it has excessive costs and/or insufficient benefits. Overall, these findings reveal how the timing and mechanisms of stress response network evolution depend on the environment

    The Fc region of an antibody impacts the neutralization of West Nile viruses in different maturation states

    Get PDF
    Flavivirus-infected cells secrete a structurally heterogeneous population of viruses because of an inefficient virion maturation process. Flaviviruses assemble as noninfectious, immature virions composed of trimers of envelope (E) and precursor membrane (prM) protein heterodimers. Cleavage of prM is a required process during virion maturation, although this often remains incomplete for infectious virus particles. Previous work demonstrated that the efficiency of virion maturation could impact antibody neutralization through changes in the accessibility of otherwise cryptic epitopes on the virion. In this study, we show that the neutralization potency of monoclonal antibody (MAb) E33 is sensitive to the maturation state of West Nile virus (WNV), despite its recognition of an accessible epitope, the domain III lateral ridge (DIII-LR). Comprehensive epitope mapping studies with 166 E protein DIII-LR variants revealed that the functional footprint of MAb E33 on the E protein differs subtly from that of the well-characterized DIII-LR MAb E16. Remarkably, aromatic substitutions at E protein residue 306 ablated the maturation state sensitivity of E33 IgG, and the neutralization efficacy of E33 Fab fragments was not affected by changes in the virion maturation state. We propose that E33 IgG binding on mature virions orients the Fc region in a manner that impacts subsequent antibody binding to nearby sites. This Fc-mediated steric constraint is a novel mechanism by which the maturation state of a virion modulates the efficacy of the humoral immune response to flavivirus infection
    • 

    corecore