15 research outputs found

    A Bayesian Unification of Self-Supervised Clustering and Energy-Based Models

    Full text link
    Self-supervised learning is a popular and powerful method for utilizing large amounts of unlabeled data, for which a wide variety of training objectives have been proposed in the literature. In this study, we perform a Bayesian analysis of state-of-the-art self-supervised learning objectives, elucidating the underlying probabilistic graphical models in each class and presenting a standardized methodology for their derivation from first principles. The analysis also indicates a natural means of integrating self-supervised learning with likelihood-based generative models. We instantiate this concept within the realm of cluster-based self-supervised learning and energy models, introducing a novel lower bound which is proven to reliably penalize the most important failure modes. Furthermore, this newly proposed lower bound enables the training of a standard backbone architecture without the necessity for asymmetric elements such as stop gradients, momentum encoders, or specialized clustering layers - typically introduced to avoid learning trivial solutions. Our theoretical findings are substantiated through experiments on synthetic and real-world data, including SVHN, CIFAR10, and CIFAR100, thus showing that our objective function allows to outperform existing self-supervised learning strategies in terms of clustering, generation and out-of-distribution detection performance by a wide margin. We also demonstrate that GEDI can be integrated into a neuro-symbolic framework to mitigate the reasoning shortcut problem and to learn higher quality symbolic representations thanks to the enhanced classification performance.Comment: Changes from previous version: added mean and standard deviations in experiments. Integral version of workshop paper arXiv:2309.15420. Improved GEDI version (from two stages to single stage training) arxiv:2212.1342

    From Statistical Relational to Neurosymbolic Artificial Intelligence: a Survey

    Full text link
    This survey explores the integration of learning and reasoning in two different fields of artificial intelligence: neurosymbolic and statistical relational artificial intelligence. Neurosymbolic artificial intelligence (NeSy) studies the integration of symbolic reasoning and neural networks, while statistical relational artificial intelligence (StarAI) focuses on integrating logic with probabilistic graphical models. This survey identifies seven shared dimensions between these two subfields of AI. These dimensions can be used to characterize different NeSy and StarAI systems. They are concerned with (1) the approach to logical inference, whether model or proof-based; (2) the syntax of the used logical theories; (3) the logical semantics of the systems and their extensions to facilitate learning; (4) the scope of learning, encompassing either parameter or structure learning; (5) the presence of symbolic and subsymbolic representations; (6) the degree to which systems capture the original logic, probabilistic, and neural paradigms; and (7) the classes of learning tasks the systems are applied to. By positioning various NeSy and StarAI systems along these dimensions and pointing out similarities and differences between them, this survey contributes fundamental concepts for understanding the integration of learning and reasoning.Comment: To appear in Artificial Intelligence. Shorter version at IJCAI 2020 survey track, https://www.ijcai.org/proceedings/2020/0688.pd

    DeepProbLog: Neural Probabilistic Logic Programming

    Get PDF
    We introduce DeepProbLog, a probabilistic logic programming language that incorporates deep learning by means of neural predicates. We show how existing inference and learning techniques can be adapted for the new language. Our experiments demonstrate that DeepProbLog supports both symbolic and subsymbolic representations and inference, 1) program induction, 2) probabilistic (logic) programming, and 3) (deep) learning from examples. To the best of our knowledge, this work is the first to propose a framework where general-purpose neural networks and expressive probabilistic-logical modeling and reasoning are integrated in a way that exploits the full expressiveness and strengths of both worlds and can be trained end-to-end based on examples.Comment: Accepted for spotlight at NeurIPS 201

    Neural Probabilistic Logic Programming in Discrete-Continuous Domains

    Full text link
    Neural-symbolic AI (NeSy) allows neural networks to exploit symbolic background knowledge in the form of logic. It has been shown to aid learning in the limited data regime and to facilitate inference on out-of-distribution data. Probabilistic NeSy focuses on integrating neural networks with both logic and probability theory, which additionally allows learning under uncertainty. A major limitation of current probabilistic NeSy systems, such as DeepProbLog, is their restriction to finite probability distributions, i.e., discrete random variables. In contrast, deep probabilistic programming (DPP) excels in modelling and optimising continuous probability distributions. Hence, we introduce DeepSeaProbLog, a neural probabilistic logic programming language that incorporates DPP techniques into NeSy. Doing so results in the support of inference and learning of both discrete and continuous probability distributions under logical constraints. Our main contributions are 1) the semantics of DeepSeaProbLog and its corresponding inference algorithm, 2) a proven asymptotically unbiased learning algorithm, and 3) a series of experiments that illustrate the versatility of our approach.Comment: 27 pages, 9 figure

    DeepProbLog: neural probabilistic logic programming

    Get PDF
    We introduce DeepProbLog, a probabilistic logic programming language that incorporates deep learning by means of neural predicates. We show how existing inference and learning techniques can be adapted for the new language. Our experiments demonstrate that DeepProbLog supports (i) both symbolic and subsymbolic representations and inference, (ii) program induction, (iii) probabilistic (logic) programming, and (iv) (deep) learning from examples. To the best of our knowledge, this work is the first to propose a framework where general-purpose neural networks and expressive probabilistic-logical modeling and reasoning are integrated in a way that exploits the full expressiveness and strengths of both worlds and can be trained end-to-end based on examples

    Three Modern Roles for Logic in AI

    Full text link
    We consider three modern roles for logic in artificial intelligence, which are based on the theory of tractable Boolean circuits: (1) logic as a basis for computation, (2) logic for learning from a combination of data and knowledge, and (3) logic for reasoning about the behavior of machine learning systems.Comment: To be published in PODS 202

    DeepStochLog: Neural Stochastic Logic Programming

    No full text
    Recent advances in neural-symbolic learning, such as DeepProbLog, extend probabilistic logic programs with neural predicates. Like graphical models, these probabilistic logic programs define a probability distribution over possible worlds, for which inference is computationally hard. We propose DeepStochLog, an alternative neural-symbolic framework based on stochastic definite clause grammars, a kind of stochastic logic program. More specifically, we introduce neural grammar rules into stochastic definite clause grammars to create a framework that can be trained end-to-end. We show that inference and learning in neural stochastic logic programming scale much better than for neural probabilistic logic programs. Furthermore, the experimental evaluation shows that DeepStochLog achieves state-of-the-art results on challenging neural-symbolic learning tasks
    corecore