19 research outputs found

    Trends in Net Survival from Vulvar Squamous Cell Carcinoma in Italy (1990–2015)

    Get PDF
    Objective: In many Western countries, survival from vulvar squamous cell carcinoma (VSCC) has been stagnating for decades or has increased insufficiently from a clinical perspective. In Italy, previous studies on cancer survival have not taken vulvar cancer into consideration or have pooled patients with vulvar and vaginal cancer. To bridge this knowledge gap, we report the trend in survival from vulvar cancer between 1990 and 2015. (2) Methods: Thirty-eight local cancer registries covering 49% of the national female population contributed the records of 6274 patients. Study endpoints included 1- and 2-year net survival (NS) calculated using the Pohar-Perme estimator and 5-year NS conditional on having survived two years (5|2-year CNS). The significance of survival trends was assessed with the Wald test on the coefficient of the period of diagnosis, entered as a continuous regressor in a Poisson regression model. (3) Results: The median patient age was stable at 76 years. One-year NS decreased from 83.9% in 1990–2001 to 81.9% in 2009–2015 and 2-year NS from 72.2% to 70.5%. Five|2-year CNS increased from 85.7% to 86.7%. These trends were not significant. In the age stratum 70–79 years, a weakly significant decrease in 2-year NS from 71.4% to 65.7% occurred. Multivariate analysis adjusting for age group at diagnosis and geographic area showed an excess risk of death at 5|2-years, of borderline significance, in 2003–2015 versus 1990–2002. (4) Conclusions: One- and 2-year NS and 5|2-year CNS showed no improvements. Current strategies for VSCC control need to be revised both in Italy and at the global level

    ITALIAN CANCER FIGURES - REPORT 2015: The burden of rare cancers in Italy = I TUMORI IN ITALIA - RAPPORTO 2015: I tumori rari in Italia

    Get PDF
    OBJECTIVES: This collaborative study, based on data collected by the network of Italian Cancer Registries (AIRTUM), describes the burden of rare cancers in Italy. Estimated number of new rare cancer cases yearly diagnosed (incidence), proportion of patients alive after diagnosis (survival), and estimated number of people still alive after a new cancer diagnosis (prevalence) are provided for about 200 different cancer entities. MATERIALS AND METHODS: Data herein presented were provided by AIRTUM population- based cancer registries (CRs), covering nowadays 52% of the Italian population. This monograph uses the AIRTUM database (January 2015), which includes all malignant cancer cases diagnosed between 1976 and 2010. All cases are coded according to the International Classification of Diseases for Oncology (ICD-O-3). Data underwent standard quality checks (described in the AIRTUM data management protocol) and were checked against rare-cancer specific quality indicators proposed and published by RARECARE and HAEMACARE (www.rarecarenet.eu; www.haemacare.eu). The definition and list of rare cancers proposed by the RARECAREnet "Information Network on Rare Cancers" project were adopted: rare cancers are entities (defined as a combination of topographical and morphological codes of the ICD-O-3) having an incidence rate of less than 6 per 100,000 per year in the European population. This monograph presents 198 rare cancers grouped in 14 major groups. Crude incidence rates were estimated as the number of all new cancers occurring in 2000-2010 divided by the overall population at risk, for males and females (also for gender-specific tumours).The proportion of rare cancers out of the total cancers (rare and common) by site was also calculated. Incidence rates by sex and age are reported. The expected number of new cases in 2015 in Italy was estimated assuming the incidence in Italy to be the same as in the AIRTUM area. One- and 5-year relative survival estimates of cases aged 0-99 years diagnosed between 2000 and 2008 in the AIRTUM database, and followed up to 31 December 2009, were calculated using complete cohort survival analysis. To estimate the observed prevalence in Italy, incidence and follow-up data from 11 CRs for the period 1992-2006 were used, with a prevalence index date of 1 January 2007. Observed prevalence in the general population was disentangled by time prior to the reference date (≤2 years, 2-5 years, ≤15 years). To calculate the complete prevalence proportion at 1 January 2007 in Italy, the 15-year observed prevalence was corrected by the completeness index, in order to account for those cancer survivors diagnosed before the cancer registry activity started. The completeness index by cancer and age was obtained by means of statistical regression models, using incidence and survival data available in the European RARECAREnet data. RESULTS: In total, 339,403 tumours were included in the incidence analysis. The annual incidence rate (IR) of all 198 rare cancers in the period 2000-2010 was 147 per 100,000 per year, corresponding to about 89,000 new diagnoses in Italy each year, accounting for 25% of all cancer. Five cancers, rare at European level, were not rare in Italy because their IR was higher than 6 per 100,000; these tumours were: diffuse large B-cell lymphoma and squamous cell carcinoma of larynx (whose IRs in Italy were 7 per 100,000), multiple myeloma (IR: 8 per 100,000), hepatocellular carcinoma (IR: 9 per 100,000) and carcinoma of thyroid gland (IR: 14 per 100,000). Among the remaining 193 rare cancers, more than two thirds (No. 139) had an annual IR <0.5 per 100,000, accounting for about 7,100 new cancers cases; for 25 cancer types, the IR ranged between 0.5 and 1 per 100,000, accounting for about 10,000 new diagnoses; while for 29 cancer types the IR was between 1 and 6 per 100,000, accounting for about 41,000 new cancer cases. Among all rare cancers diagnosed in Italy, 7% were rare haematological diseases (IR: 41 per 100,000), 18% were solid rare cancers. Among the latter, the rare epithelial tumours of the digestive system were the most common (23%, IR: 26 per 100,000), followed by epithelial tumours of head and neck (17%, IR: 19) and rare cancers of the female genital system (17%, IR: 17), endocrine tumours (13% including thyroid carcinomas and less than 1% with an IR of 0.4 excluding thyroid carcinomas), sarcomas (8%, IR: 9 per 100,000), central nervous system tumours and rare epithelial tumours of the thoracic cavity (5%with an IR equal to 6 and 5 per 100,000, respectively). The remaining (rare male genital tumours, IR: 4 per 100,000; tumours of eye, IR: 0.7 per 100,000; neuroendocrine tumours, IR: 4 per 100,000; embryonal tumours, IR: 0.4 per 100,000; rare skin tumours and malignant melanoma of mucosae, IR: 0.8 per 100,000) each constituted <4% of all solid rare cancers. Patients with rare cancers were on average younger than those with common cancers. Essentially, all childhood cancers were rare, while after age 40 years, the common cancers (breast, prostate, colon, rectum, and lung) became increasingly more frequent. For 254,821 rare cancers diagnosed in 2000-2008, 5-year RS was on average 55%, lower than the corresponding figures for patients with common cancers (68%). RS was lower for rare cancers than for common cancers at 1 year and continued to diverge up to 3 years, while the gap remained constant from 3 to 5 years after diagnosis. For rare and common cancers, survival decreased with increasing age. Five-year RS was similar and high for both rare and common cancers up to 54 years; it decreased with age, especially after 54 years, with the elderly (75+ years) having a 37% and 20% lower survival than those aged 55-64 years for rare and common cancers, respectively. We estimated that about 900,000 people were alive in Italy with a previous diagnosis of a rare cancer in 2010 (prevalence). The highest prevalence was observed for rare haematological diseases (278 per 100,000) and rare tumours of the female genital system (265 per 100,000). Very low prevalence (<10 prt 100,000) was observed for rare epithelial skin cancers, for rare epithelial tumours of the digestive system and rare epithelial tumours of the thoracic cavity. COMMENTS: One in four cancers cases diagnosed in Italy is a rare cancer, in agreement with estimates of 24% calculated in Europe overall. In Italy, the group of all rare cancers combined, include 5 cancer types with an IR>6 per 100,000 in Italy, in particular thyroid cancer (IR: 14 per 100,000).The exclusion of thyroid carcinoma from rare cancers reduces the proportion of them in Italy in 2010 to 22%. Differences in incidence across population can be due to the different distribution of risk factors (whether environmental, lifestyle, occupational, or genetic), heterogeneous diagnostic intensity activity, as well as different diagnostic capacity; moreover heterogeneity in accuracy of registration may determine some minor differences in the account of rare cancers. Rare cancers had worse prognosis than common cancers at 1, 3, and 5 years from diagnosis. Differences between rare and common cancers were small 1 year after diagnosis, but survival for rare cancers declined more markedly thereafter, consistent with the idea that treatments for rare cancers are less effective than those for common cancers. However, differences in stage at diagnosis could not be excluded, as 1- and 3-year RS for rare cancers was lower than the corresponding figures for common cancers. Moreover, rare cancers include many cancer entities with a bad prognosis (5-year RS <50%): cancer of head and neck, oesophagus, small intestine, ovary, brain, biliary tract, liver, pleura, multiple myeloma, acute myeloid and lymphatic leukaemia; in contrast, most common cancer cases are breast, prostate, and colorectal cancers, which have a good prognosis. The high prevalence observed for rare haematological diseases and rare tumours of the female genital system is due to their high incidence (the majority of haematological diseases are rare and gynaecological cancers added up to fairly high incidence rates) and relatively good prognosis. The low prevalence of rare epithelial tumours of the digestive system was due to the low survival rates of the majority of tumours included in this group (oesophagus, stomach, small intestine, pancreas, and liver), regardless of the high incidence rate of rare epithelial cancers of these sites. This AIRTUM study confirms that rare cancers are a major public health problem in Italy and provides quantitative estimations, for the first time in Italy, to a problem long known to exist. This monograph provides detailed epidemiologic indicators for almost 200 rare cancers, the majority of which (72%) are very rare (IR<0.5 per 100,000). These data are of major interest for different stakeholders. Health care planners can find useful information herein to properly plan and think of how to reorganise health care services. Researchers now have numbers to design clinical trials considering alternative study designs and statistical approaches. Population-based cancer registries with good quality data are the best source of information to describe the rare cancer burden in a population

    Common variants in Alzheimer’s disease and risk stratification by polygenic risk scores

    Get PDF
    Funder: Funder: Fundación bancaria ‘La Caixa’ Number: LCF/PR/PR16/51110003 Funder: Grifols SA Number: LCF/PR/PR16/51110003 Funder: European Union/EFPIA Innovative Medicines Initiative Joint Number: 115975 Funder: JPco-fuND FP-829-029 Number: 733051061Genetic discoveries of Alzheimer's disease are the drivers of our understanding, and together with polygenetic risk stratification can contribute towards planning of feasible and efficient preventive and curative clinical trials. We first perform a large genetic association study by merging all available case-control datasets and by-proxy study results (discovery n = 409,435 and validation size n = 58,190). Here, we add six variants associated with Alzheimer's disease risk (near APP, CHRNE, PRKD3/NDUFAF7, PLCG2 and two exonic variants in the SHARPIN gene). Assessment of the polygenic risk score and stratifying by APOE reveal a 4 to 5.5 years difference in median age at onset of Alzheimer's disease patients in APOE ɛ4 carriers. Because of this study, the underlying mechanisms of APP can be studied to refine the amyloid cascade and the polygenic risk score provides a tool to select individuals at high risk of Alzheimer's disease

    Changing geographical patterns and trends in cancer incidence in children and adolescents in Europe, 1991–2010 (Automated Childhood Cancer Information System): a population-based study

    Get PDF
    Background: A deceleration in the increase in cancer incidence in children and adolescents has been reported in several national and regional studies in Europe. Based on a large database representing 1·3 billion person-years over the period 1991–2010, we provide a consolidated report on cancer incidence trends at ages 0–19 years. Methods: We invited all population-based cancer registries operating in European countries to participate in this population-based registry study. We requested a listing of individual records of cancer cases, including sex, age, date of birth, date of cancer diagnosis, tumour sequence number, primary site, morphology, behaviour, and the most valid basis of diagnosis. We also requested population counts in each calendar year by sex and age for the registration area, from official national sources, and specific information about the covered area and registration practices. An eligible registry could become a contributor if it provided quality data for all complete calendar years in the period 1991–2010. Incidence rates and the average annual percentage change with 95% CIs were reported for all cancers and major diagnostic groups, by region and overall, separately for children (age 0–14 years) and adolescents (age 15–19 years). We examined and quantified the stability of the trends with joinpoint analyses. Findings: For the years 1991–2010, 53 registries in 19 countries contributed a total of 180 335 unique cases. We excluded 15 162 (8·4%) of 180 335 cases due to differing practices of registration, and considered the quality indicators for the 165 173 cases included to be satisfactory. The average annual age-standardised incidence was 137·5 (95% CI 136·7–138·3) per million person-years and incidence increased significantly by 0·54% (0·44–0·65) per year in children (age 0–14 years) with no change in trend. In adolescents, the combined European incidence was 176·2 (174·4–178·0) per million person-years based on all 35 138 eligible cases and increased significantly by 0·96% (0·73–1·19) per year, although recent changes in rates among adolescents suggest a deceleration in this increasing trend. We observed temporal variations in trends by age group, geographical region, and diagnostic group. The combined age-standardised incidence of leukaemia based on 48 458 cases in children was 46·9 (46·5–47·3) per million person-years and increased significantly by 0·66% (0·48–0·84) per year. The average overall incidence of leukaemia in adolescents was 23·6 (22·9–24·3) per million person-years, based on 4702 cases, and the average annual change was 0·93% (0·49–1·37). We also observed increasing incidence of lymphoma in adolescents (average annual change 1·04% [0·65–1·44], malignant CNS tumours in children (average annual change 0·49% [0·20–0·77]), and other tumours in both children (average annual change 0·56 [0·40–0·72]) and adolescents (average annual change 1·17 [0·82–1·53]). Interpretation: Improvements in the diagnosis and registration of cancers over time could partly explain the observed increase in incidence, although some changes in underlying putative risk factors cannot be excluded. Cancer incidence trends in this young population require continued monitoring at an international level. Funding: Federal Ministry of Health of the Federal German Government, the European Union's Seventh Framework Programme, and International Agency for Research on Cancer

    Cancer data quality and harmonization in Europe: the experience of the BENCHISTA Project – international benchmarking of childhood cancer survival by stage

    Get PDF
    IntroductionVariation in stage at diagnosis of childhood cancers (CC) may explain differences in survival rates observed across geographical regions. The BENCHISTA project aims to understand these differences and to encourage the application of the Toronto Staging Guidelines (TG) by Population-Based Cancer Registries (PBCRs) to the most common solid paediatric cancers.MethodsPBCRs within and outside Europe were invited to participate and identify all cases of Neuroblastoma, Wilms Tumour, Medulloblastoma, Ewing Sarcoma, Rhabdomyosarcoma and Osteosarcoma diagnosed in a consecutive three-year period (2014-2017) and apply TG at diagnosis. Other non-stage prognostic factors, treatment, progression/recurrence, and cause of death information were collected as optional variables. A minimum of three-year follow-up was required. To standardise TG application by PBCRs, on-line workshops led by six tumour-specific clinical experts were held. To understand the role of data availability and quality, a survey focused on data collection/sharing processes and a quality assurance exercise were generated. To support data harmonization and query resolution a dedicated email and a question-and-answers bank were created.Results67 PBCRs from 28 countries participated and provided a maximally de-personalized, patient-level dataset. For 26 PBCRs, data format and ethical approval obtained by the two sponsoring institutions (UCL and INT) was sufficient for data sharing. 41 participating PBCRs required a Data Transfer Agreement (DTA) to comply with data protection regulations. Due to heterogeneity found in legal aspects, 18 months were spent on finalizing the DTA. The data collection survey was answered by 68 respondents from 63 PBCRs; 44% of them confirmed the ability to re-consult a clinician in cases where stage ascertainment was difficult/uncertain. Of the total participating PBCRs, 75% completed the staging quality assurance exercise, with a median correct answer proportion of 92% [range: 70% (rhabdomyosarcoma) to 100% (Wilms tumour)].ConclusionDifferences in interpretation and processes required to harmonize general data protection regulations across countries were encountered causing delays in data transfer. Despite challenges, the BENCHISTA Project has established a large collaboration between PBCRs and clinicians to collect detailed and standardised TG at a population-level enhancing the understanding of the reasons for variation in overall survival rates for CC, stimulate research and improve national/regional child health plans

    Multiancestry analysis of the HLA locus in Alzheimer’s and Parkinson’s diseases uncovers a shared adaptive immune response mediated by HLA-DRB1*04 subtypes

    Get PDF
    Across multiancestry groups, we analyzed Human Leukocyte Antigen (HLA) associations in over 176,000 individuals with Parkinson’s disease (PD) and Alzheimer’s disease (AD) versus controls. We demonstrate that the two diseases share the same protective association at the HLA locus. HLA-specific fine-mapping showed that hierarchical protective effects of HLA-DRB1*04 subtypes best accounted for the association, strongest with HLA-DRB1*04:04 and HLA-DRB1*04:07, and intermediary with HLA-DRB1*04:01 and HLA-DRB1*04:03. The same signal was associated with decreased neurofibrillary tangles in postmortem brains and was associated with reduced tau levels in cerebrospinal fluid and to a lower extent with increased Aβ42. Protective HLA-DRB1*04 subtypes strongly bound the aggregation-prone tau PHF6 sequence, however only when acetylated at a lysine (K311), a common posttranslational modification central to tau aggregation. An HLA-DRB1*04-mediated adaptive immune response decreases PD and AD risks, potentially by acting against tau, offering the possibility of therapeutic avenues

    Pleural mesothelioma risk in the construction industry: a case–control study in Italy, 2000–2018

    No full text
    Objectives Workers in the construction industry have been exposed to asbestos in various occupations. In Italy, a National Mesothelioma Registry has been implemented more than 20 years ago. Using cases selected from this registry and exploiting existing control data sets, we estimated relative risks for pleural mesothelioma (PM) among construction workers.Design Case–control study.Setting Cases from the National Mesothelioma Registry (2000–2018), controls from three previous case–control studies.Methods We selected male PM incident cases diagnosed in 2000–2018. Population controls were taken from three studies performed in six Italian regions within two periods (2002–2004 and 2012–2016). Age-adjusted and period-adjusted unconditional logistic regression models were fitted to estimate odds ratios (OR) for occupations in the construction industry. We followed two approaches, one (primary) excluding and the other (secondary) including subjects employed in other non-construction blue collar occupations for >5 years. For both approaches, we performed an overall analysis including all cases and, given the incomplete temporal and geographic overlap of cases and controls, three time or/and space restricted sensitivity analyses.Results The whole data set included 15 592 cases and 2210 controls. With the primary approach (4797 cases and 1085 controls), OR was 3.64 (2181 cases) for subjects ever employed in construction. We found elevated risks for blue-collar occupations (1993 cases, OR 4.52), including bricklayers (988 cases, OR 7.05), general construction workers (320 cases, OR 4.66), plumbers and pipe fitters (305 cases, OR 9.13), painters (104 cases, OR 2.17) and several others. Sensitivity analyses yielded very similar findings. Using the secondary approach, we observed similar patterns, but ORs were remarkably lower.Conclusions We found markedly increased PM risks for most occupations in the construction industry. These findings are relevant for compensation of subjects affected with mesothelioma in the construction industry

    Cancer incidence in Italian contaminated sites

    No full text
    The incidence of cancer among residents in sites contaminated by pollutants with a possible health impact is not adequately studied. In Italy, SENTIERI Project (Epidemiological study of residents in National Priority Contaminated Sites, NPCSs) was implemented to study major health outcomes for residents in 44 NPCSs. Methods: The Italian Association of Cancer Registries (AIRTUM) records cancer incidence in 23 NPCSs. For each NPCSs, the incidence of all malignant cancers combined and 35 cancer sites (coded according to ICD-10), was analysed (1996-2005). The observed cases were compared to the expected based on age (5-year period, 18 classes), gender, calendar period (1996-2000; 2001-2005), geographical area (North-Centre and Centre-South) and cancer sites specific rates. Standardized Incidence Ratios (SIR) with 90% Confidence Intervals were computed. Results: In both genders an excess was observed for overall cancer incidence (9% in men and 7% in women) as well as for specific cancer sites (colon and rectum, liver, gallbladder, pancreas, lung, skin melanoma, bladder and Non Hodgkin lymphoma). Deficits were observed for gastric cancer in both genders, chronic lymphoid leukemia (men), malignant thyroid neoplasms, corpus uteri and connective and soft-tissue tumours and sarcomas (women). Discussion: This report is, to our knowledge, the first one on cancer risk of residents in NPCSs. The study, although not aiming to estimate the cancer burden attributable to the environment as compared to occupation or life-style, supports the credibility of an etiologic role of environmental exposures in contaminated sites. Ongoing analyses focus on the interpretation of risk factors for excesses of specific cancer types overall and in specific NPCSs in relation to the presence of carcinogenic pollutants
    corecore