3 research outputs found

    Structure related transport properties and cellular uptake of hyperbranched polyglycerol sulfates with hydrophobic cores

    No full text
    A set of six hydrophobically derivatized polymers based on polyglycerol sulfates have been investigated to determine the influence of scaffold architecture on the encapsulation properties of hydrophobic guests. Each of three block and statistical copolymers has been synthesized with phenyl, naphthyl, and biphenyl substituents in a one-pot procedure. The copolymers have been functionalized with sulfate groups in order to introduce an electrostatically repulsive surface that can stabilize the aggregated carriers. In addition, sulfates provide a highly active targeting moiety for inflammation and cellular uptake. UV measurements show a supramolecular encapsulation of the investigated guest molecules in the low μM range. The transport studies with pyrene and an indocarbocyanine dye further indicated a core–shell-type architecture which provides a distinct amphiphilicity as required for supramolecular guest complexation. The combination of a host functionality with an active sulfate targeting moiety has been used to investigate the structure related cellular transport properties

    Tandem Coordination, Ring-Opening, Hyperbranched Polymerization for the Synthesis of Water-Soluble Core–Shell Unimolecular Transporters

    No full text
    A water-soluble molecular transporter with a dendritic core–shell nanostructure has been prepared by a tandem coordination, ring-opening, hyperbranched polymerization process. Consisting of hydrophilic hyperbranched polyglycerol shell grafted from hydrophobic dendritic polyethylene core, the transporter has a molecular weight of 951 kg/mol and a hydrodynamic diameter of 17.5 ± 0.9 nm, as determined by static and dynamic light scattering, respectively. Based on evidence from fluorescence spectroscopy, light scattering, and electron microscopy, the core–shell copolymer transports the hydrophobic guests pyrene and Nile red by a unimolecular transport mechanism. Furthermore, it was shown that the core–shell copolymer effectively transports the hydrophobic dye Nile red into living cells under extremely high and biologically relevant dilution conditions, which is in sharp contrast to a small molecule amphiphile. These results suggest potential applicability of such core–shell molecular transporters in the administration of poorly water-soluble drugs
    corecore