92 research outputs found
A Drosophila Pattern Recognition Receptor Contains a Peptidoglycan Docking Groove and Unusual L,D-Carboxypeptidase Activity
The Drosophila peptidoglycan recognition protein SA (PGRP-SA) is critically involved in sensing bacterial infection and activating the Toll signaling pathway, which induces the expression of specific antimicrobial peptide genes. We have determined the crystal structure of PGRP-SA to 2.2-Å resolution and analyzed its peptidoglycan (PG) recognition and signaling activities. We found an extended surface groove in the structure of PGRP-SA, lined with residues that are highly diverse among different PGRPs. Mutational analysis identified it as a PG docking groove required for Toll signaling and showed that residue Ser158 is essential for both PG binding and Toll activation. Contrary to the general belief that PGRP-SA has lost enzyme function and serves primarily for PG sensing, we found that it possesses an intrinsic L,D-carboxypeptidase activity for diaminopimelic acid-type tetrapeptide PG fragments but not lysine-type PG fragments, and that Ser158 and His42 may participate in the hydrolytic activity. As L,D-configured peptide bonds exist only in prokaryotes, this work reveals a rare enzymatic activity in a eukaryotic protein known for sensing bacteria and provides a possible explanation of how PGRP-SA mediates Toll activation specifically in response to lysine-type PG
AgDscam, a Hypervariable Immunoglobulin Domain-Containing Receptor of the Anopheles gambiae Innate Immune System
Activation of the insect innate immune system is dependent on a limited number of pattern recognition receptors (PRRs) capable of interacting with pathogen-associated molecular pattern. Here we report a novel role of an alternatively spliced hypervariable immunoglobulin domain-encoding gene, Dscam, in generating a broad range of PRRs implicated in immune defense in the malaria vector Anopheles gambiae. The mosquito Down syndrome cell adhesion molecule gene, AgDscam, has a complex genome organization with 101 exons that can produce over 31,000 potential alternative splice forms with different combinations of adhesive domains and interaction specificities. AgDscam responds to infection by producing pathogen challenge-specific splice form repertoires. Transient silencing of AgDscam compromises the mosquito's resistance to infections with bacteria and the malaria parasite Plasmodium. AgDscam is mediating phagocytosis of bacteria with which it can associate and defend against in a splice form–specific manner. AgDscam is a hypervariable PRR of the A. gambiae innate immune system
The Drosophila melanogaster host model
The deleterious and sometimes fatal outcomes of bacterial infectious diseases are the net result of the interactions between the pathogen and the host, and the genetically tractable fruit fly, Drosophila melanogaster, has emerged as a valuable tool for modeling the pathogen–host interactions of a wide variety of bacteria. These studies have revealed that there is a remarkable conservation of bacterial pathogenesis and host defence mechanisms between higher host organisms and Drosophila. This review presents an in-depth discussion of the Drosophila immune response, the Drosophila killing model, and the use of the model to examine bacterial–host interactions. The recent introduction of the Drosophila model into the oral microbiology field is discussed, specifically the use of the model to examine Porphyromonas gingivalis–host interactions, and finally the potential uses of this powerful model system to further elucidate oral bacterial-host interactions are addressed
Signal Integration by the IκB Protein Pickle Shapes <i>Drosophila</i> Innate Host Defense
SummaryPattern recognition receptors are activated following infection and trigger transcriptional programs important for host defense. Tight regulation of NF-κB activation is critical to avoid detrimental and misbalanced responses. We describe Pickle, a Drosophila nuclear IκB that integrates signaling inputs from both the Imd and Toll pathways by skewing the transcriptional output of the NF-κB dimer repertoire. Pickle interacts with the NF-κB protein Relish and the histone deacetylase dHDAC1, selectively repressing Relish homodimers while leaving other NF-κB dimer combinations unscathed. Pickle’s ability to selectively inhibit Relish homodimer activity contributes to proper host immunity and organismal health. Although loss of pickle results in hyper-induction of Relish target genes and improved host resistance to pathogenic bacteria in the short term, chronic inactivation of pickle causes loss of immune tolerance and shortened lifespan. Pickle therefore allows balanced immune responses that protect from pathogenic microbes while permitting the establishment of beneficial commensal host-microbe relationships
Systematic variation in gene expression patterns in human cancer cell lines
We used cDNA microarrays to explore the variation in expression of approximately 8,000 unique genes among the 60 cell lines used in the National Cancer Institute's screen for anti-cancer drugs. Classification of the cell lines based solely on the observed patterns of gene expression revealed a correspondence to the ostensible origins of the tumours from which the cell lines were derived. The consistent relationship between the gene expression patterns and the tissue of origin allowed us to recognize outliers whose previous classification appeared incorrect. Specific features of the gene expression patterns appeared to be related to physiological properties of the cell lines, such as their doubling time in culture, drug metabolism or the interferon response. Comparison of gene expression patterns in the cell lines to those observed in normal breast tissue or in breast tumour specimens revealed features of the expression patterns in the tumours that had recognizable counterparts in specific cell lines, reflecting the tumour, stromal and inflammatory components of the tumour tissue. These results provided a novel molecular characterization of this important group of human cell lines and their relationships to tumours in vivo
The Drosophila tumor suppressor gene lethal(2)giant larvae is required for the emission of the Decapentaplegic signal
International audienceThe Drosophila tumor suppressor gene lethal(2) giant larvae (lgl) encodes a cytoskeletal protein required for the change in shape and polarity acquisition of epithelial cells, and also for asymmetric division of neuroblasts. We show here that lgl participates in the emission of Decapentaplegic (Dpp), a member of the transforming growth factor beta (TGFbeta) family, in various developmental processes. During embryogenesis, lgl is required for the dpp-dependent transcriptional activation of zipper (zip), which encodes the non-muscle myosin heavy chain (NMHC), in the dorsalmost ectodermal cells - the leading edge cells. The embryonic expression of known targets of the dpp signaling pathway, such as labial or tinman was abolished or strongly reduced in lgl mutants. lgl mutant cuticles exhibited phenotypes resembling those observed in mutated partners of the dpp signaling pathway. In addition, lgl was required downstream of dpp and upstream of its receptor Thickveins (Tkv) for the dorsoventral patterning of the ectoderm. During larval development, the expression of spalt, a dpp target, was abolished in mutant wing discs, while it was restored by a constitutively activated form of Tkv (Tkv(Q253D)). Taking into account that the activation of dpp expression was unaffected in the mutant, this suggests that lgl function is not required downstream of the Dpp receptor. Finally, the function of lgl responsible for the activation of Spalt expression appeared to be required only in the cells that produce Dpp, and lgl mutant somatic clones behaved non autonomously. We therefore position the activity of lgl in the cells that produce Dpp, and not in those that respond to the Dpp signal. These results are consistent with a same role for lgl in exocytosis and secretion as that proposed for its yeast ortholog sro7/77 and lgl might function in parallel or independently of its well-documented role in the control of epithelial cell polarity
- …