5 research outputs found

    The crucial impact of iron deficiency definition for the course of precapillary pulmonary hypertension.

    No full text
    Imbalances of iron homeostasis are associated with an adverse clinical outcome of pulmonary hypertension (PH). Herein, we aimed to analyze the impact of iron deficiency (ID) in a real-life PH patient cohort according to different currently used ID definitions. In a retrospective study including 153 precapillary PH patients followed over a mean period of five years, iron deficiency was assessed according to five clinical definitions used in previous trials. The impact of ID on clinical, hematological and hemodynamic parameters was investigated. Depending on the different cutoff levels for serum ferritin and transferrin saturation, currently used ID definitions indicated a prevalence of either true or functional ID in 11 to 75 percent of PH patients. A good diagnostic accuracy was achieved by using the sTFRF/log ferritin (sTFRF) index, which identified 33 to 42 percent of PH patients as being iron deficient. The sTFRF index had the best prediction for the association between ID and clinical outcome. Iron deficient patients with precapillary PH had a significantly higher mortality as compared to non-iron deficiency subjects, which was true for both, PH patients with and without anemia. Although levels of the iron hormone hepcidin were rather affected by ID than by inflammation, they were not associated with the clinical course or mortality of PH subjects. To conclude, ID had a significant impact on the clinical course of precapillary PH patients. The appropriate use of robust biomarkers to define ID is a prerequisite to further evaluate the role of ID and the potential benefit of iron supplementation in precapillary PH patients

    The Impact of Iron Dyshomeostasis and Anaemia on Long-Term Pulmonary Recovery and Persisting Symptom Burden after COVID-19: A Prospective Observational Cohort Study

    No full text
    Coronavirus disease 2019 (COVID-19) is frequently associated with iron dyshomeostasis. The latter is related to acute disease severity and COVID-19 convalescence. We herein describe iron dyshomeostasis at COVID-19 follow-up and its association with long-term pulmonary and symptomatic recovery. The prospective, multicentre, observational cohort study “Development of Interstitial Lung Disease (ILD) in Patients With Severe SARS-CoV-2 Infection (CovILD)” encompasses serial extensive clinical, laboratory, functional and imaging evaluations at 60, 100, 180 and 360 days after COVID-19 onset. We included 108 individuals with mild-to-critical acute COVID-19, whereas 75% presented with severe acute disease. At 60 days post-COVID-19 follow-up, hyperferritinaemia (35% of patients), iron deficiency (24% of the cohort) and anaemia (9% of the patients) were frequently found. Anaemia of inflammation (AI) was the predominant feature at early post-acute follow-up, whereas the anaemia phenotype shifted towards iron deficiency anaemia (IDA) and combinations of IDA and AI until the 360 days follow-up. The prevalence of anaemia significantly decreased over time, but iron dyshomeostasis remained a frequent finding throughout the study. Neither iron dyshomeostasis nor anaemia were related to persisting structural lung impairment, but both were associated with impaired stress resilience at long-term COVID-19 follow-up. To conclude, iron dyshomeostasis and anaemia are frequent findings after COVID-19 and may contribute to its long-term symptomatic outcome

    Biocompatible Polylactide-<i>block</i>-Polypeptide-<i>block</i>-Polylactide Nanocarrier

    No full text
    Polypeptides are successfully incorporated into poly­(l-lactide) (PLLA) chains in a ring-opening polymerization (ROP) of l-lactide by using them as initiators. The resulting ABA triblock copolymers possess molecular weights up to 11000 g·mol<sup>–1</sup> and polydispersities as low as 1.13, indicating the living character of the polymerization process. In a nonaqueous emulsion, peptide-initiated polymerization of l-lactide leads to well-defined nanoparticles, consisting of PLLA-<i>block</i>-peptide-<i>block</i>-PLLA copolymer. These nanoparticles are easily loaded by dye-encapsulation and transferred into aqueous media without aggregation (average diameter of 100 nm) or significant dye leakage. Finally, internalization of PLLA-<i>block</i>-peptide-<i>block</i>-PLLA nanoparticles by HeLa cells is demonstrated by a combination of coherent anti-Stokes Raman spectroscopy (CARS) and fluorescence microscopy. This demonstrates the promise of their utilization as cargo delivery vehicles

    Stable differentiation and clonality of murine long-term hematopoiesis after extended reduced-intensity selection for MGMT P140K transgene expression

    No full text
    Efficient in vivo selection increases survival of gene-corrected hematopoietic stem cells (HSCs) and protects hematopoiesis, even if initial gene transfer efficiency is low. Moreover, selection of a limited number of transduced HSCs lowers the number of cell clones at risk of gene activation by insertional mutagenesis. However, a limited clonal repertoire greatly increases the proliferation stress of each individual clone. Therefore, understanding the impact of in vivo selection on proliferation and lineage differentiation of stem-cell clones is essential for its clinical use. We established minimal cell and drug dosage requirements for selection of P140K mutant O6-methylguanine-DNA-methyltransferase (MGMT P140K)–expressing HSCs and monitored their differentiation potential and clonality under long-term selective stress. Up to 17 administrations of O6-benzylguanine (O6-BG) and 1,3-bis(2-chloroethyl)-1-nitroso-urea (BCNU) did not impair long-term differentiation and proliferation of MGMT P140K–expressing stem-cell clones in mice that underwent serial transplantation and did not lead to clonal exhaustion. Interestingly, not all gene-modified hematopoietic repopulating cell clones were efficiently selectable. Our studies demonstrate that the normal function of murine hematopoietic stem and progenitor cells is not compromised by reduced-intensity long-term in vivo selection, thus underscoring the potential value of MGMT P140K selection for clinical gene therapy
    corecore