12 research outputs found

    Rates and Predictors of Treatment Failure in Staphylococcus aureus Prosthetic Joint Infections According to Different Management Strategies: A Multinational Cohort Study—The ARTHR-IS Study Group

    Full text link
    Introduction: Guidelines have improved the management of prosthetic joint infections (PJI). However, it is necessary to reassess the incidence and risk factors for treatment failure (TF) of Staphylococcus aureus PJI (SA-PJI) including functional loss, which has so far been neglected as an outcome. Methods: A retrospective cohort study of SA-PJI was performed in 19 European hospitals between 2014 and 2016. The outcome variable was TF, including related mortality, clinical failure and functional loss both after the initial surgical procedure and after all procedures at 18 months. Predictors of TF were identified by logistic regression. Landmark analysis was used to avoid immortal time bias with rifampicin when debridement, antibiotics and implant retention (DAIR) was performed. Results: One hundred twenty cases of SA-PJI were included. TF rates after the first and all surgical procedures performed were 32.8% and 24.2%, respectively. After all procedures, functional loss was 6.0% for DAIR and 17.2% for prosthesis removal. Variables independently associated with TF for the first procedure were Charlson >= 2, haemoglobin 30 kg/m(2) and delay of DAIR, while rifampicin use was protective. For all procedures, the variables associated with TF were haemoglobin < 10 g/dL, hip fracture and additional joint surgery not related to persistent infection. Conclusions: TF remains common in SA-PJI. Functional loss accounted for a substantial proportion of treatment failures, particularly after prosthesis removal. Use of rifampicin after DAIR was associated with a protective effect. Among the risk factors identified, anaemia and obesity have not frequently been reported in previous studies. [GRAPHICS]

    The BACHD Rat Model of Huntington Disease Shows Specific Deficits in a Test Battery of Motor Function

    No full text
    Rationale: Huntington disease (HD) is a progressive neurodegenerative disorder characterized by motor, cognitive and neuropsychiatric symptoms. HD is usually diagnosed by the appearance of motor deficits, resulting in skilled hand use disruption, gait abnormality, muscle wasting and choreatic movements. The BACHD transgenic rat model for HD represents a well-established transgenic rodent model of HD, offering the prospect of an in-depth characterization of the motor phenotype.Objective: The present study aims to characterize different aspects of motor function in BACHD rats, combining classical paradigms with novel high-throughput behavioral phenotyping.Methods: Wild-type (WT) and transgenic animals were tested longitudinally from 2 to 12 months of age. To measure fine motor control, rats were challenged with the pasta handling test and the pellet reaching test. To evaluate gross motor function, animals were assessed by using the holding bar and the grip strength tests. Spontaneous locomotor activity and circadian rhythmicity were assessed in an automated home-cage environment, namely the PhenoTyper. We then integrated existing classical methodologies to test motor function with automated home-cage assessment of motor performance.Results: BACHD rats showed strong impairment in muscle endurance at 2 months of age. Altered circadian rhythmicity and locomotor activity were observed in transgenic animals. On the other hand, reaching behavior, forepaw dexterity and muscle strength were unaffected.Conclusions: The BACHD rat model exhibits certain features of HD patients, like muscle weakness and changes in circadian behavior. We have observed modest but clear-cut deficits in distinct motor phenotypes, thus confirming the validity of this transgenic rat model for treatment and drug discovery purposes

    Impulsivity trait in the early symptomatic BACHD transgenic rat model of Huntington disease.

    No full text
    International audienceImpulsivity trait was characterized in 3-5 months old BACHD rats, a transgenic model of Huntington disease, using (1) the delay discounting task to assess cognitive/choice impulsivity, and (2) the Differential Reinforcement of Low Rate of Responding task to evaluate motor/action impulsivity. Transgenic animals showed a high level of choice impulsivity and, to a lesser extent, action impulsivity. Our results provide the first evidence that the transgenic BACHD rat (TG5 line) displays impulsivity disorder as early as 3 months old, as described in early symptomatic HD patients, thus adding to the face validity of the rat model

    BACHD rats expressing full-length mutant huntingtin exhibit differences in social behavior compared to wild-type littermates

    Get PDF
    <div><p>Background</p><p>Huntington disease (HD) is a devastating inherited neurodegenerative disorder characterized by progressive motor, cognitive, and psychiatric symptoms without any cure to slow down or stop the progress of the disease. The BACHD rat model for HD carrying the human full-length mutant huntingtin protein (mHTT) with 97 polyQ repeats has been recently established as a promising model which reproduces several HD-like features. While motor and cognitive functions have been characterized in BACHD rats, little is known about their social phenotype.</p><p>Objective</p><p>This study focuses especially on social behavior since evidence for social disturbances exists in human patients. Our objective was to compare social behavior in BACHD and wild-type (WT) rats at different ages, using two different measures of sociability.</p><p>Methods</p><p>Animals were tested longitudinally at the age of 2, 4 and 8 months in the social interaction test to examine different parameters of sociability. A separate cohort of 7 month old rats was tested in the three chamber social test to measure both sociability and social novelty. Gene expression analyses in 8 months old animals were performed by real time qRT-PCR to evaluate a potential involvement of D1 and D2 dopaminergic receptors and the contribution of Brain-derived neurotrophic factor (BDNF) to the observed behavioral alterations.</p><p>Results</p><p>In the social interaction test, BACHD rats showed age-dependent changes in behaviour when they were-re introduced to their cagemate after a 24 hours-period of individual housing. The time spent on nape attacks increased with aging. Furthermore, a significant higher level of pinning at 2 months of age was shown in the BACHD rats compared to wild-types, followed by a reduction at 4 and 8 months. On the other hand, BACHD rats exhibited a decreased active social behaviour compared to wild-types, reflected by genotype-effects on approaching, following and social nose contact. In the three chamber social test, BACHD rats seemed to show a mild deficit in preference for social novelty, but no changes in social interest. Molecular analyses revealed that BACHD animals exposed to the social interaction test displayed decreased mRNA levels of the total form of BDNF in ventral striatum and unaltered striatal expression of D1 and D2 dopamine receptors.</p><p>Conclusions</p><p>Taken together, these results indicate deficits in several parameters representative of sociability. Altered BDNF expression in the ventral striatum may contribute to the deficits in sociability in 8 months old BACHD rats. These data support the validity of the BACHD rat model in mimicking features of certain social deficits that could be relevant to symptoms in patients.</p></div

    Social interaction test.

    No full text
    <p>(A) Nape Attacking. (B) Pinning. (C) Social Nose Contact. (D) Following. (E) Approaching. (F) Allogrooming. (G) Moving Away. (H) Solitary. Data are expressed as means + S.E.M. Two-way ANOVA results are displayed above each graph. Results from <i>post-hoc</i> analysis are indicated on the graph in case significant genotype differences were found. N = 12 pairs of WT and 12 pairs of BACHD rats.</p

    PhenoTyper® 9000 (PT9000) cage setup for testing.

    No full text
    <p>A photo displaying two rats during the social interaction test. Cagemates were brought together after being individually housed for 24h. Animals were marked red or black using a permanent marker in order to distinguish each rat of the couple. In contrast to black marking, the red marking was not visible because of the infrared lighting conditions, and it was used to prevent that the marking could become a confounding factor.</p
    corecore