499 research outputs found

    The impact of red giant/AGB winds on AGN jet propagation

    Full text link
    Dense stellar winds may mass-load the jets of active galactic nuclei, although it is unclear what are the time and spatial scales in which the mixing takes place. We study the first steps of the interaction between jets and stellar winds, and also the scales at which the stellar wind may mix with the jet and mass-load it. We present a detailed two-dimensional simulation, including thermal cooling, of a bubble formed by the wind of a star. We also study the first interaction of the wind bubble with the jet using a three-dimensional simulation in which the star enters the jet. Stability analysis is carried out for the shocked wind structure, to evaluate the distances over which the jet-dragged wind, which forms a tail, can propagate without mixing with the jet flow. The two-dimensional simulations point at quick wind bubble expansion and fragmentation after about one bubble shock crossing time. Three-dimensional simulations and stability analysis point at local mixing in the case of strong perturbations and relatively small density ratios between the jet and the jet dragged-wind, and to a possibly more stable shocked wind structure at the phase of maximum tail mass flux. Analytical estimates also indicate that very early stages of the star jet-penetration time may be also relevant for mass loading. The combination of these and previous results from the literature suggest highly unstable interaction structures and efficient wind-jet flow mixing on the scale of the jet interaction height, possibly producing strong inhomogeneities within the jet. In addition, the initial wind bubble shocked by the jet leads to a transient, large interaction surface. The interaction structure can be a source of significant non-thermal emission.Comment: Accepted for publication in Astronomy & Astrophysic

    Propagation of Magnetic Avalanches in Mn12Ac at High Field Sweep Rates

    Get PDF
    Time-resolved measurements of the magnetization reversal in single crystals of Mn 12 Ac in pulsed magnetic fields, at magnetic field sweep rates from 1.5     kT / s up to 7     kT / s , suggest a new process that cannot be scaled onto a deflagrationlike propagation driven by heat diffusion. The sweep rate dependence of the propagation velocity, increasing from a few 100     m / s up to the speed of sound in Mn 12 Ac , indicates the existence of two new regimes at the highest sweep rates, with a transition around 4     kT / s that can be understood as a magnetic deflagration-to-detonation transition

    Large Nonreciprocal Propagation of Surface Acoustic Waves in Epitaxial Ferromagnetic/Semiconductor Hybrid Structures

    Full text link
    Nonreciprocal propagation of sound, that is, the different transmission of acoustic waves traveling in opposite directions, is a challenging requirement for the realization of devices such as acoustic isolators and circulators. Here, we demonstrate efficient nonreciprocal transmission of surface acoustic waves (SAWs) propagating in opposite directions in a GaAs substrate coated with an epitaxial Fe3Si film. The nonreciprocity arises from the acoustic attenuation induced by the magnetoelastic (ME) interaction between the SAW strain field and spin waves in the ferromagnetic film, which depends on the SAW propagation direction and can be controlled via the amplitude and orientation of an external magnetic field. The acoustic-transmission nonreciprocity, defined as the difference between the transmitted acoustic powers for forward and backward propagation at the ME resonance, reaches values of up to 20%, which are, to our knowledge, the largest values of nonreciprocity reported for SAWs traveling in a semiconducting piezoelectric substrate covered by a ferromagnetic film. The experimental results are well accounted for by a model for the ME interaction, which also shows that the nonreciprocity can be further enhanced by optimization of the sample design. These results make Fe3Si/GaAs a promising platform for the realization of efficient nonreciprocal SAW devices

    A Comparative Study of Benchtop and Portable NIR and Raman Spectroscopic Methods for the Quantitative Determination of Curcuminoids in Turmeric Powder

    Get PDF
    Turmeric consumption is continually increasing worldwide. Curcuminoids are major active constituents in turmeric and are associated with numerous health benefits. A combination of spectroscopic methods and chemometrics shows the suitability of turmeric for food quality control due to advantages such as speed, versatility, portability, and no need for sample preparation. Five calibration models to quantify curcuminoids in turmeric were proposed using benchtop and portable devices. The most remarkable results showed that Raman and NIR calibration models present an excellent performance reporting RMSEP of 0.44% w/w and 0.41% w/w, respectively. In addition, the five proposed methods (FT-IR, Raman, and NIR) were compared in terms of precision and accuracy. The results showed that benchtop and portable methods were in good agreement and that there are no significant differences between them. This study aims to foster the use of portable devices for food quality control in situ by demonstrating their suitability for the purpose

    Frequency and predictors of thrombus inside the guiding catheter during interventional procedures: an optical coherence tomography study

    Get PDF
    Optical coherence tomography (OCT) is able to identify thrombus. We detect the frequency of thrombus inside the guiding catheter by OCT and its relationship with clinical and procedural factors. We screened 77 patients who underwent OCT pullbacks. Only patients with visible guiding catheter were finally included (35) and divided into thrombus (21) or no-thrombus group (14). Patients within thrombus group were mostly males (100 vs. 71 %, p = 0.05), with acute coronary syndrome (76 vs. 36 %, p = 0.02) and received more frequently percutaneous coronary intervention (86 vs. 43 %, p = 0.01) as compared to other group. A second dose of heparin was more frequently administered in thrombus than in other group (86 vs. 50 %, p = 0.01). Time between first heparin administration and OCT pullback (41[28–57] vs. 20 min [10–32], p = 0.001), time elapsed from second heparin administration and OCT pullback (29 [19–48] vs. 16 min [12–22], p = 0.002) and total procedural time (47 [36–69] vs. 31 min [26–39], p = 0.005) were longer in thrombus compared to other group. At multivariate analysis, total procedural time and time between first heparin administration and OCT pullback were only predictors of intra-catheter thrombus (HR 0.6 [0.3–0.9], p = 0.03 and HR 1.9 [1.1–3.2], p = 0.02, respectively). Thrombus inside guiding catheter may be a frequent finding in long interventional procedure. Future studies are warranted to determine its clinical impact

    Storing magnetic information in IrMn/MgO/Ta tunnel junctions via field-cooling

    Get PDF
    In this paper, we demonstrate that in Ta/MgO/IrMn tunneling junctions, containing no ferromagnetic elements, distinct metastable resistance states can be set by field cooling the devices from above the NĂ©el temperature (TN) along different orientations. Variations of the resistance up to 10% are found upon field cooling in applied fields, in-plane or out-of-plane. Well below TN, these metastable states are insensitive to magnetic fields up to 2 T, thus constituting robust memory states. Our work provides the demonstration of an electrically readable magnetic memory device, which contains no ferromagnetic elements and stores the information in an antiferromagnetic active layer

    Epigenetics in schizophrenia: a pilot study of global DNA methylation in different brain regions associated with higher cognitive functions

    Get PDF
    Attempts to discover genes that are involved in the pathogenesis of major psychiatric disorders have been frustrating and often fruitless. Concern is building about the need to understand the complex ways in which nature and nurture interact to produce mental illness. We analyze the epigenome in several brain regions from schizophrenic patients with severe cognitive impairment using high-resolution (450K) DNA methylation array. We identified 139 differentially methylated CpG sites included in known and novel candidate genes sequences as well as in and intergenic sequences which functions remain unknown. We found that altered DNA methylation is not restricted to a particular region, but includes others such as CpG shelves and gene bodies, indicating the presence of different DNA methylation signatures depending on the brain area analyzed. Our findings suggest that epimutations are not relatables between different tissues or even between tissues' regions, highlighting the need to adequately study brain samples to obtain reliable data concerning the epigenetics of schizophrenia
    • …
    corecore