22 research outputs found
Aerosolized Surfactant for Preterm Infants with Respiratory Distress Syndrome
Currently, the administration of surfactant to preterm infants with respiratory distress syndrome (RDS) mainly relies on intratracheal instillation; however, there is increasing evidence of aerosolized surfactant being an effective non-invasive strategy. We present a historical narrative spanning sixty years of development of aerosolization systems. We also offer an overview of the pertinent mechanisms needed to create and manage the ideal aerosolization system, with a focus on delivery, distribution, deposition, and dispersion in the context of the human lung. More studies are needed to optimize treatment with aerosolized surfactants, including determination of ideal dosages, nebulizer types, non-invasive interfaces, and breath synchronization. However, the field is rapidly evolving, and widespread clinical use may be achieved in the near future
Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial
Background
Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy
Transcriptional and genomic parallels between the monoxenous parasite Herpetomonas muscarum and Leishmania
Trypanosomatid parasites are causative agents of important human and animal diseases such as sleeping sickness and leishmaniasis. Most trypanosomatids are transmitted to their mammalian hosts by insects, often belonging to Diptera (or true flies). These are called dixenous trypanosomatids since they infect two different hosts, in contrast to those that infect just insects (monoxenous). However, it is still unclear whether dixenous and monoxenous trypanosomatids interact similarly with their insect host, as fly-monoxenous trypanosomatid interaction systems are rarely reported and under-studied–despite being common in nature. Here we present the genome of monoxenous trypanosomatid Herpetomonas muscarum and discuss its transcriptome during in vitro culture and during infection of its natural insect host Drosophila melanogaster. The H. muscarum genome is broadly syntenic with that of human parasite Leishmania major. We also found strong similarities between the H. muscarum transcriptome during fruit fly infection, and those of Leishmania during sand fly infections. Overall this suggests Drosophila-Herpetomonas is a suitable model for less accessible insect-trypanosomatid host-parasite systems such as sand fly-Leishmania
Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK.
BACKGROUND: A safe and efficacious vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), if deployed with high coverage, could contribute to the control of the COVID-19 pandemic. We evaluated the safety and efficacy of the ChAdOx1 nCoV-19 vaccine in a pooled interim analysis of four trials. METHODS: This analysis includes data from four ongoing blinded, randomised, controlled trials done across the UK, Brazil, and South Africa. Participants aged 18 years and older were randomly assigned (1:1) to ChAdOx1 nCoV-19 vaccine or control (meningococcal group A, C, W, and Y conjugate vaccine or saline). Participants in the ChAdOx1 nCoV-19 group received two doses containing 5 × 1010 viral particles (standard dose; SD/SD cohort); a subset in the UK trial received a half dose as their first dose (low dose) and a standard dose as their second dose (LD/SD cohort). The primary efficacy analysis included symptomatic COVID-19 in seronegative participants with a nucleic acid amplification test-positive swab more than 14 days after a second dose of vaccine. Participants were analysed according to treatment received, with data cutoff on Nov 4, 2020. Vaccine efficacy was calculated as 1 - relative risk derived from a robust Poisson regression model adjusted for age. Studies are registered at ISRCTN89951424 and ClinicalTrials.gov, NCT04324606, NCT04400838, and NCT04444674. FINDINGS: Between April 23 and Nov 4, 2020, 23 848 participants were enrolled and 11 636 participants (7548 in the UK, 4088 in Brazil) were included in the interim primary efficacy analysis. In participants who received two standard doses, vaccine efficacy was 62·1% (95% CI 41·0-75·7; 27 [0·6%] of 4440 in the ChAdOx1 nCoV-19 group vs71 [1·6%] of 4455 in the control group) and in participants who received a low dose followed by a standard dose, efficacy was 90·0% (67·4-97·0; three [0·2%] of 1367 vs 30 [2·2%] of 1374; pinteraction=0·010). Overall vaccine efficacy across both groups was 70·4% (95·8% CI 54·8-80·6; 30 [0·5%] of 5807 vs 101 [1·7%] of 5829). From 21 days after the first dose, there were ten cases hospitalised for COVID-19, all in the control arm; two were classified as severe COVID-19, including one death. There were 74 341 person-months of safety follow-up (median 3·4 months, IQR 1·3-4·8): 175 severe adverse events occurred in 168 participants, 84 events in the ChAdOx1 nCoV-19 group and 91 in the control group. Three events were classified as possibly related to a vaccine: one in the ChAdOx1 nCoV-19 group, one in the control group, and one in a participant who remains masked to group allocation. INTERPRETATION: ChAdOx1 nCoV-19 has an acceptable safety profile and has been found to be efficacious against symptomatic COVID-19 in this interim analysis of ongoing clinical trials. FUNDING: UK Research and Innovation, National Institutes for Health Research (NIHR), Coalition for Epidemic Preparedness Innovations, Bill & Melinda Gates Foundation, Lemann Foundation, Rede D'Or, Brava and Telles Foundation, NIHR Oxford Biomedical Research Centre, Thames Valley and South Midland's NIHR Clinical Research Network, and AstraZeneca
Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK
Background
A safe and efficacious vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), if deployed with high coverage, could contribute to the control of the COVID-19 pandemic. We evaluated the safety and efficacy of the ChAdOx1 nCoV-19 vaccine in a pooled interim analysis of four trials.
Methods
This analysis includes data from four ongoing blinded, randomised, controlled trials done across the UK, Brazil, and South Africa. Participants aged 18 years and older were randomly assigned (1:1) to ChAdOx1 nCoV-19 vaccine or control (meningococcal group A, C, W, and Y conjugate vaccine or saline). Participants in the ChAdOx1 nCoV-19 group received two doses containing 5 × 1010 viral particles (standard dose; SD/SD cohort); a subset in the UK trial received a half dose as their first dose (low dose) and a standard dose as their second dose (LD/SD cohort). The primary efficacy analysis included symptomatic COVID-19 in seronegative participants with a nucleic acid amplification test-positive swab more than 14 days after a second dose of vaccine. Participants were analysed according to treatment received, with data cutoff on Nov 4, 2020. Vaccine efficacy was calculated as 1 - relative risk derived from a robust Poisson regression model adjusted for age. Studies are registered at ISRCTN89951424 and ClinicalTrials.gov, NCT04324606, NCT04400838, and NCT04444674.
Findings
Between April 23 and Nov 4, 2020, 23 848 participants were enrolled and 11 636 participants (7548 in the UK, 4088 in Brazil) were included in the interim primary efficacy analysis. In participants who received two standard doses, vaccine efficacy was 62·1% (95% CI 41·0–75·7; 27 [0·6%] of 4440 in the ChAdOx1 nCoV-19 group vs71 [1·6%] of 4455 in the control group) and in participants who received a low dose followed by a standard dose, efficacy was 90·0% (67·4–97·0; three [0·2%] of 1367 vs 30 [2·2%] of 1374; pinteraction=0·010). Overall vaccine efficacy across both groups was 70·4% (95·8% CI 54·8–80·6; 30 [0·5%] of 5807 vs 101 [1·7%] of 5829). From 21 days after the first dose, there were ten cases hospitalised for COVID-19, all in the control arm; two were classified as severe COVID-19, including one death. There were 74 341 person-months of safety follow-up (median 3·4 months, IQR 1·3–4·8): 175 severe adverse events occurred in 168 participants, 84 events in the ChAdOx1 nCoV-19 group and 91 in the control group. Three events were classified as possibly related to a vaccine: one in the ChAdOx1 nCoV-19 group, one in the control group, and one in a participant who remains masked to group allocation.
Interpretation
ChAdOx1 nCoV-19 has an acceptable safety profile and has been found to be efficacious against symptomatic COVID-19 in this interim analysis of ongoing clinical trials
The iDiabetes Platform:Enhanced Phenotyping of Patients with Diabetes for Precision Diagnosis, Prognosis and Treatment- study protocol for a cluster-randomised controlled study
Introduction and Aim Diabetes is a global health emergency with increasing prevalence and diabetes-associated morbidity and mortality. One of the challenges in optimising diabetes care is translating research advances in this heterogenous disease into routine clinical care. A potential solution is the introduction of precision medicine approaches into diabetes care.We aim to develop a digital platform called ‘intelligent Diabetes’ (iDiabetes) to support a precision diabetes care model in Scotland and assess its impact on the primary composite outcome of all-cause mortality, hospitalisation rate, renal function decline and glycaemic control.Methods and Analysis The impact of iDiabetes will be evaluated through a cluster-randomised controlled study, recruiting up to 22,500 patients with diabetes. Primary care general practices (GP) in the National Health Service Scotland Tayside Health Board are the units (clusters) of randomisation. Each primary care GP will form one cluster (approximately 400 patients per cluster), with up to 60 clusters recruited. Randomisation will be to iDiabetes (guideline support), iDiabetesPlus or usual diabetes care (control arm). Patients of participating primary care GPs are automatically enrolled to the study when they attend for their annual diabetes screening or are newly diagnosed with diabetes. A composite hierarchical primary outcome, evaluated using Win-Ratio statistical methodology, will consists of (I) all-cause mortality, (II) all-cause hospitalisation rate, (III) proportion with >40% eGFR reduction from baseline or new development of end-stage renal disease, (IV) proportion with absolute HbA1C reduction >0.5%. Comprehensive qualitative and health economic analyses will be conducted, assessing the cost-effectiveness, budget impact and user acceptability of the iDiabetes platform
The iDiabetes Platform:Enhanced Phenotyping of Patients with Diabetes for Precision Diagnosis, Prognosis and Treatment- study protocol for a cluster-randomised controlled study
Introduction and Aim Diabetes is a global health emergency with increasing prevalence and diabetes-associated morbidity and mortality. One of the challenges in optimising diabetes care is translating research advances in this heterogenous disease into routine clinical care. A potential solution is the introduction of precision medicine approaches into diabetes care.We aim to develop a digital platform called ‘intelligent Diabetes’ (iDiabetes) to support a precision diabetes care model in Scotland and assess its impact on the primary composite outcome of all-cause mortality, hospitalisation rate, renal function decline and glycaemic control.Methods and Analysis The impact of iDiabetes will be evaluated through a cluster-randomised controlled study, recruiting up to 22,500 patients with diabetes. Primary care general practices (GP) in the National Health Service Scotland Tayside Health Board are the units (clusters) of randomisation. Each primary care GP will form one cluster (approximately 400 patients per cluster), with up to 60 clusters recruited. Randomisation will be to iDiabetes (guideline support), iDiabetesPlus or usual diabetes care (control arm). Patients of participating primary care GPs are automatically enrolled to the study when they attend for their annual diabetes screening or are newly diagnosed with diabetes. A composite hierarchical primary outcome, evaluated using Win-Ratio statistical methodology, will consists of (I) all-cause mortality, (II) all-cause hospitalisation rate, (III) proportion with >40% eGFR reduction from baseline or new development of end-stage renal disease, (IV) proportion with absolute HbA1C reduction >0.5%. Comprehensive qualitative and health economic analyses will be conducted, assessing the cost-effectiveness, budget impact and user acceptability of the iDiabetes platform
Current trends in European media Opportunities and challenges in a dynamic market
SIGLEAvailable from British Library Document Supply Centre-DSC:V98/02366 / BLDSC - British Library Document Supply CentreGBUnited Kingdo